期刊文献+

基于单壁碳纳米管阵列的力敏传感器 被引量:4

Force-sensitive Sensor Based on Single-walled Carbon Nanotube Array
下载PDF
导出
摘要 利用传统的硅微加工技术,在硅片上制作出平行的微电极对,然后对硅片进行深刻蚀穿通,在微电极对之间获得长方形的贯通缝。接着利用大气流定向式的化学气相沉积方法在带有贯通缝与微电极的硅片上生长出超长单壁碳纳米管阵列,使单壁碳纳米管阵列较整齐地悬于平行电极对之间,待将生长有纳米管的硅片粘在聚氯乙稀薄板上之后,再用激光技术切除掉贯通缝的连接部分,使作用于聚氯乙稀薄板上的力能够直接传递到单壁碳纳米管阵列。引出导线,完成此微纳力敏传感器件的制作。随后主要开展悬空单壁碳纳米管阵列应变传感方面的研究,获得了较高的压阻因子与线性度。结果表明这种制作方法具有过程简单、成本低等特点,为基于碳纳米管的微纳传感器件的制作提供新的思路。 Traditional silicon micro-machining technology is utilized to produce parallel micro-electrodes on silicon chips,and silicon chips are deeply etched to wear a rectangular hole between the parallel micro-electrodes.Next,ultra-long single-walled carbon nanotube(SWCNT) array is grown across micro-electrodes and rectangular hole to suspend well aligned between the parallel micro-electrodes by the method of large gas flow directional chemical vapor deposition(CVD).The Si chip attached with SWCNTs is then mounted onto a thin PVC base and the connections of Si island are cut by laser technology,so that the force acting on the PVC base can directly transfer to SWCNT array.After extraction of wires,the fabrication of micro-nano-force-sensing unit is finished.Later,the research is carried out mainly on strain sensing of suspended SWCNT array.High gauge factor and linearity are obtained.The experimental results show that this sensor unit is simple and low in cost,thus providing a new way of thinking upon the preparation for micro-nano integrated sensor unit based on carbon nanotubes.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第18期13-17,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50875139 60876088)
关键词 化学气相沉积 悬空单壁碳纳米管阵列 应变传感 微纳传感器件 Chemical vapor deposition Suspended single-walled carbon nanotube array Strain-sensing Micro-nano-sensing device
  • 相关文献

参考文献14

  • 1FRANKLIN N R, WANG Q, TOMBLER T W, et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems[J]. Appl. Phys. Lett., 2002, 81(5):913-915.
  • 2陈明君,李洪珠,李旦.碳纳米管力学行为研究的新进展[J].机械工程学报,2005,41(3):18-24. 被引量:8
  • 3ZHENG L X, O’CONNELL M J, DOORN S K, et al. Ultralong single-wall carbon nanotubes[J]. Nature Mater., 2004, 3(10):673-676 .
  • 4HUANG L, WHITE B, SFEIR M Y, et al. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes[J]. J. Phys. Chem. B, 2006, 110(23):11 103-11 109.
  • 5BACHILO S M, BALZANO L, HERRERA J E, et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst[J]. J. Am. Chem. Soc., 2003, 125(37):11 186-11 187.
  • 6LI Y, MANN D, ROLANDI M, et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method[J]. Nano Lett., 2004, 4(2):317-321.
  • 7ZHAN Y, ZHANG J, SON H, et al. Substrate- induced raman frequency variation for single-walled carbon nanotubes[J]. J. Am. Chem. Soc., 2005, 127(49): 17 156-17 157.
  • 8GROW R J, WANG Q, CAO J, et al. Piezoresistance of carbon nanotubes on deformable thin-film membranes[J]. Appl. Phys. Lett., 2005, 86(9):093104-1-093104-3.
  • 9STAMPFER C, HELBLING T, OBERGFELL D, et al. Fabrication of single-walled carbon-nanotube-based pressure sensors[J]. Nano Lett., 2006, 6(2):233-237.
  • 10CAO J, WANG Q, DAI H. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching[J]. Phys. ReV. Lett., 2003, 90(15):157601-1-157601-4.

二级参考文献78

  • 1段小洁,何茂帅,王璇,张锦,刘忠范.表面上单壁碳纳米管的可控生长[J].科学通报,2004,49(23):2377-2385. 被引量:3
  • 2Ebbesen T W, Hiura H, Fujita J, et al. Patterns in the bulk growth of carbon nanotubes. Chem. Phys. Letters, 1993,209 : 83-85.
  • 3Pan Z W, Xie S S. Very long carbon nanotubes. Nature,1998, 83-. 917-919.
  • 4Lu J P. The elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett., 1997, 79:1 297- 1 301.
  • 5Sinnott S B, Shenderova O A. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 1998, 36.- 1 -9.
  • 6Yakobson B I, Smalley R E. Fullerence nanotubes: C1,000,000 and beyond. Am. Sci., 1997, 85:324-336.
  • 7Dai H J, Hafner J H. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 1996, 384: 147- 150.
  • 8Wong S S, Ernesto Joselevich, Woolley A T. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature, 1998, 394:52-53.
  • 9Hafner J H, Cheung C L. Growth of nanotubes for probe microscopy tips. Nature, 1999, 398:761-762.
  • 10Dai H J, Flanklin N. Exploiting the properties of carbon nanotubes for nanolithography. Appl. Phys. Lett., 1998,73: 1 508.

共引文献10

同被引文献13

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部