期刊文献+

二维声学数值计算的光滑有限元法 被引量:8

Smoothed Finite Element Method for Two-dimensional Acoustic Numerical Computation
下载PDF
导出
摘要 针对声学有限元分析中四节点等参单元不规则网格计算精度低甚至结果错误的问题,将光滑有限元法(Smoothed finite element method,SFEM)应用到不规则四边形网格的声学计算中,推导出光滑有限元法分析二维声学问题的原理公式。声学SFEM将声压梯度光滑处理技术结合到标准有限元法中,对声压梯度进行分区光滑处理,用光滑声压梯度来计算声学刚度矩阵,光滑域内对形函数梯度的积分转变为域边界上形函数积分,消除了坐标变换,提高了计算效率。以二维管道声腔和车内声腔模型为数值算例,研究结果表明,与标准有限元法相比,对扭曲严重的四边形网格,声学光滑有限元法具有更高的精度和准确度,特别是高频计算时。因此,光滑有限元法可以很好地应用于二维声学不规则网格的计算中,具有广阔的应用前景。 In the acoustic finite element method(FEM),typical problems of four-node isoparametric element are low accuracy and even wrong solution for irregular meshes in numerical implementation.This paper proposes to use the smoothed finite element method(SFEM) for the acoustic analysis of irregular quadrilateral mesh,and the formulation of SFEM is presented for the two-dimensional acoustic problem.The acoustic SFEM incorporates cell-wise smoothing operations into standard finite element method and the smoothed acoustic pressure gradient is obtained by using cell-wise smoothing operation.The acoustic stiffness matrix can be calculated by using the smoothed acoustic pressure gradient matrix and the domain integrals involving shape function gradients can be recast into boundary integrals involving only shape functions.More importantly,as no coordinate transformation is involved,it is more efficient than isoparametric element.Numerical example of a two-dimensional tube and car cavity are presented to show that the acoustic SFEM achieves higher accuracy as compared with FEM when quadrilateral meshes are seriously distorted especially in the high frequency calculation.Hence the SFEM can be well applied in solving the two-dimensional acoustic problems with very irregular meshes,and has application foreground.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第18期115-120,共6页 Journal of Mechanical Engineering
基金 教育部长江学者与创新团队发展计划(5311050050037) 国家高技术研究发展计划(863计划 2009AA04Z414)资助项目
关键词 光滑有限元法 有限元法 声学分析 Smoothed finite element method Finite element method Acoustic analysis
  • 相关文献

参考文献13

  • 1朱才朝,秦大同,李润方.车身结构振动与车内噪声声场耦合分析与控制[J].机械工程学报,2002,38(8):54-58. 被引量:55
  • 2程昊,高煜,张永斌,毕传兴,陈剑.振动体声学灵敏度分析的边界元法[J].机械工程学报,2008,44(7):45-51. 被引量:19
  • 3PETERSEN S, DREYER D, ESTORFF O V. Assessment of finite and spectral element shape functions or efficient iterative simulations of interior acoustics [J]. Computer Methods in Applied Mechanicals and Engineering, 2006, 195:6 463-6 478.
  • 4RONG Zhijian, XU Chuanju. Numerical approximation of acoustic by spectral element methods [J]. Applied Numerical Mathematics, 2008, 58:999-1 016.
  • 5HARARI I, MAGOULES F. Numerical investigations of stabilized finite element computations for acoustics [J]. Wave Motion, 2004, 39:339-349.
  • 6BOUILLARD P, SULEAU S. Element-Free Garlekin so- lutions for Helmholtz problems:Formulation and numerical assessment of the pollution effect [J]. Com- puter Methods in Applied Mechanicals and Engineering, 1998, 162:317-335.
  • 7BOUILLARD P, LACROIX V, BEL E D. A wave orien- ted meshless formulation for acoustical and vibro-acoustical applications [J]. Wave Motion, 2004, 39:295-305.
  • 8LIU Guirong, NGUYEN T T, DAI Kuiyang, et al. Theoretical aspects of the smoothed finite element method (SFEM) [J]. International Journal for Numerical Methods in Engineering, 2007, 71 (8):902-930.
  • 9LIU Guirong, DAI Kuiyang, NGUYEN T T. A smoothed finite element method for mechanics problems [J]. Computational Mechanics, 2007, 6(39):859-877.
  • 10NGUYEN-XUAN H, RABCZUK T, BORDAS S, et al. A smoothed finite element method for plate analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197:1 184-1 203.

二级参考文献12

  • 1张军,兆文忠,张维英.结构声辐射有限元/边界元法声学-结构灵敏度研究[J].振动工程学报,2005,18(3):366-370. 被引量:24
  • 2凯墨乐M M.现代汽车结构分析[M].北京:人民交通出版社,1987..
  • 3BERNHARD R J, SMITH D C. Acoustic design sensitivity analysis[M]//CISKOWSKI R D, BREBBIA C A, ed. Boundary element methods in acoustics. Amsterdam.Computational Mechanics Publications-Elsevier Applied Science, 1991.
  • 4KANE J H, MAO S, EVERSTINE G C. A boundary element formulation for acoustic shape sensitivity analysis [J]. J. Acoust. Soc. Am., 1991, 90(1): 561-573.
  • 5KOO B U, IH J G, LEE B C. Acoustic shape sensitivity analysis using the boundary integral equation[J]. J. Acoust. Soc. Am., 1998, 104(5): 2 851-2 860.
  • 6KOO B U. Shape design sensitivity analysis of acoustic problems using a boundary element method[J]. Computers and Structures, 1997, 65(5): 713-719.
  • 7SARIGUL A S, SECGIN A. A study on the applications of the acoustic design sensitivity analysis of vibrating bodies [J]. Applied Acoustics, 2004(65): 1037-1056.
  • 8LEE Jeawon, WANG Semyung. Shape design sensitivity analysis for the radiated noise from the thin-body[J]. Journal of Sound and Vibration, 2003, 261: 895-910.
  • 9ZHANG Zhidong, NICKOLAS V, RAVEENDRA S T. Formulation of a numerical process for acoustic impedance sensitivity analysis based on the indirect boundary element method [J]. Engineering Analysis with Boundary Elements, 2003, 27: 671-681.
  • 10RICARDO S. A three-dimensional formulation for deriving the acoustic shape sensitivity using the boundary element method [D]. Michigan: University of Michigan,2001.

共引文献68

同被引文献96

  • 1刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126. 被引量:104
  • 2THOMPSON L L. A review of finite-element methods for time-harmonic acoustics[J] Society of America, 2006, Journal of the Acoustical 119(3).. 1315-1330.
  • 3DERAEMAEKER A, BABU~KA I, BOUILLARD E Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimension[J]. International Journal for Numerical Methods in Engineering, 1999, 46(4): 471-499.
  • 4YAO Linyun, YE Dejie, ZANG Xianguo. Numerical treatment of acoustic problems with the smoothed finite element method[J]. Applied Acoustics, 2010, 71(8): 743-753.
  • 5BIERMANN J, VON ESTORFF O, PETERSEN S, et al. Higher order finite and infinite elements for the solution of Helmholtz problems[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(13-14): 1171-1188.
  • 6MOHAMED M S, LAGHROUCHE O, EL-KACIMI A. Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems[J]. Computers & Structures, 2010, 88(23-24): 1484-1491.
  • 7STROUBOULIS T, BABUKA I, HIDAJAT R. The generalized fmite element method for Helmholtz equation: Theory, computation, and open problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(37-40): 4711-4731.
  • 8STROUBOULIS T, HIDAJAT R, BABUKA I. Thegeneralized finite element method for Helmholtz equation, part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(5): 364-380.
  • 9HE Zeng, LI Pang, LI Zhijiang, et al. Dispersion and pollution of the improved meshless weighted least-square (IMWLS) solution for the Helmholtz equation[J]. Engineering Analysis with Boundary Elements, 2011, 35(5)- 791-801.
  • 10HE Zeng, LI Peng, ZHAO Gaoyu, Galerkin least-square method for equation[J]. Engineering Analysis Elements, 2011, 35(6): 868-878, et al. A meshless the Helmholtz with Boundary.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部