期刊文献+

两弹塑性非赫兹接触粗糙表面温升的分形模型 被引量:3

Fractal Model of Temperature Rise Between Two Elastoplastic NonHertz Contact Rough Surfaces
下载PDF
导出
摘要 针对赫兹接触理论存在的3个缺陷,考虑表面粗糙度和塑性变形,适当处理接触物体交界面处的摩擦,将赫兹接触理论以更符合实际的方式推广到滑动接触.采用球形微凸体的赫兹接触理论和MB修正模型,对微接触点的温升进行了分析,得到了低速滑动区域内的分形区域实际接触面积温升的补充累积概率分布函数的封闭形式表达式.分析结果表明:分形区域的最大温升随滑动速度增大而线性增大,非零域随滑动速度增大而扩展.对于固定的量纲一分形粗糙度参数,最大温升随分形维数增大而减小;对于固定的分形维数,最大温升随量纲一分形粗糙度参数增大而增大.温升的补充累积概率分布函数随滑动速度增大而增大,随分形维数增大或量纲一分形粗糙度参数减小而减小.平均温升为最大温升的0.402 3倍,温升的标准差为最大温升的0.24倍. The Hertz contact theory has 3 shortcomings. Surface roughness and plastic deformation considered, a proper treatment of friction at the interface of bodies in contact has enabled the Hertz contact theory to be extended to slipping contact in a more realistic way. The microcontact temperature rises were analyzed in light of the Hertz contact theory for spherical asperity tips and MB modified model. A closed form expression for the complementary cumulative probability distribution function of the temperature rise at the real contact area of a fractal domain was deduced for the slow sliding region. The analytical results indicate that when the sliding speed increases, the maximum temperature rise of a fractal regime linearly increases; the nonzero domain expands as the sliding velocity increases. For fixed dimensionless fractal roughness parameter, when the fractal dimension increases the maximum temperature rise decreases; while for fixed fractal dimension, when the dimensionless fractal roughness parameter increases, it results in a higher maximum temperature rise. When the sliding speed increases, the complementary cumulative probability distribution function of the temperature rise increases; and when the fractal dimension increases, or the dimensionless fractal roughness parameter decreases, it decreases. The average value and standard deviation of the temperature rise are 0. 4023 and 0.24 times the maximum temperature rise, respectively.
出处 《三峡大学学报(自然科学版)》 CAS 2010年第4期77-83,共7页 Journal of China Three Gorges University:Natural Sciences
关键词 分形维数 平截面积 热导率 概率分布函数 fractal dimension truncated area thermal conductivity probability distribution function
  • 相关文献

参考文献21

  • 1Hertz Heinrich.Uber Die Berührung Fester Elastischer Krper (On the Contact of Elastic Solids)[J].J reine und angewandte Mathematik,1882,92:156-171.
  • 2Bhushan Bharat.Principles and Applications of Tribology[M].New York:John Wiley & Sons,1999:200.
  • 3Blok H.Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions[J].Proceedings of the General Discussion on Lubrication & Lubricants:the Institution of Mechanical Engineers,1937,2:222-235.
  • 4Archard J F.The Temperature of Rubbing Surfaces[J].Wear,1958-1959,2:438-455.
  • 5Jaeger John Conrad.Moving Sources of Heat and the Temperature at Sliding Contacts[J].Journal and Proceedings of the Royal Society of New South Wales,1942,56:203-224.
  • 6Wang S,Komvopoulos K.A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime:Part Ⅱ--Multiple Domains,Elastoplastic Contacts and Applications[J].Journal of Tribology,1994,116(4):824-832.
  • 7Majumdar A,Bhushan Bharat.Fractal Model of Elastic-Plastic Contact Between Rough Surfaces[J].Journal of Tribology,1991,113(1):1-11.
  • 8Ray Sudipto,Roy Chowdhury S K.Prediction of Flash Temperature at the Contact Between Sliding Bodies With Nanoscale Surface Roughness[J].Journal of Tribology,2007,129(3):467-480.
  • 9Czichos H,Kirschke K.Investigations into Film Failure (Transition Point) of Lubricated Concentrated Contacts[J].Wear,1972,22(3):321-336.
  • 10孟凤英,丁启朔,鹿飞,丁为民,潘根兴.冲击作用下粘性土壤破碎体的分形维数与影响因素[J].农业机械学报,2009,40(3):108-111. 被引量:18

二级参考文献64

共引文献33

同被引文献29

  • 1Majumdar A, Bhushan Bharat. Fractal Model of Elastic- Plastic Contact Between Rough Surfaces [J]. ASME Journal of Tribology, 19 91,113 ( 1 ) : 1-11.
  • 2Majumdar A, Bhushan Bharat. Role of Fractal Geome- try in Roughness Characterization and Contact Mechan- ics of Surfaces[J]. ASME Journal of Tribology, 1990, 112(2) =205-216.
  • 3Sayles R S, Thomas T R. Surface Topography as a Nonstationary Random Process [J]. Nature, 1978,271 (5644) :431-434.
  • 4Greenwood J A, Williamson J B P. Contact of Nominal ly Flat Surfaces[J]. Proceedings of the Royal Society of London, 1966, Series A Mathematical and Physical Sci- ences 295 (1442) : 300-319.
  • 5Mandelbrot Benoit B. The Fractal Geometry of Nature [M]. New YorkW H Freeman and Company, 1983: 117 119.
  • 6Tian Hongliang,Li Bin,Liu Hongqi,et al.A NewMethod of Virtual Material Hypothesis-Based DynamicModeling on Fixed Joint Interface in Machine Tools[J].ELSEVIER International Journal of Machine Tools&Manufacture,2011,51(3):239-249.
  • 7Ibrahim R A,Pettit C L.Uncertainties and DynamicProblems of Bolted Joints and Other Fasteners[J].Journal of Sound and Vibration,2005,21(3-5):857-936.
  • 8Jiang Shuyun,Zheng Yunjian,Zhu Hua.A ContactStiffness Model Machined Plane Joint Based on FractalTheory[J].ASME Journal of Tribology,2010,132(1):011401-1-011401-7.
  • 9Ausloos M,Berman D H.A Multivariate Weierstrass-Mandelbrot Function[J].Proceedings of the Royal Soci-ety of London,1985,Series A Mathematical and Physi-cal Sciences 400(1819):331-350.
  • 10Majumdar A,Bhushan Bharat.Role of Fractal Geome-try in Roughness Characterization and Contact Mechan-ics of Surfaces[J].ASME Journal of Tribology,1990,112(2):205-216.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部