期刊文献+

基于模糊神经网络的非线性系统预测函数控制研究 被引量:1

Research on predictive function control of nonlinear system based on fuzzy neural network
下载PDF
导出
摘要 针对预测函数控制难以很好地实现非线性系统控制的问题,将模糊神经网络与预测函数控制相结合,设计一种基于模糊神经网络的非线性系统的预测函数控制器。用模糊神经网络辨识非线性系统的模型,辨识结果送到预测函数控制中,从而得到预测模型,最终得到最优的控制量。通过Matlab计算机仿真,可以看出此控制器对于非线性系统具有良好的控制效果和鲁棒性。 Predictive functional control is difficult for the realization of a good control in non-linear system, so the fuzzy neural network combined with the predictive functional control, a kind of predictive functional controller for the nonlinear systems is designed which based on fuzzy neural network. The fuzzy neural network is used to identify the model of nonlinear systems, and the identification results sent to the predictive functional control, so the predictive models can be got. Finally the optimal control value can be got. Through the Matlab computer simulation, we can see, this controller for the nonlinear system has good control performance and robustness.
出处 《黑龙江工程学院学报》 CAS 2010年第3期53-57,共5页 Journal of Heilongjiang Institute of Technology
基金 国家自然科学基金资助项目(60875025) 黑龙江省自然科学基金资助项目(F200920) 东北林业大学青年科研基金资助(09018) 中央高校基本科研业务费专项资金资助(DL09AB09)
关键词 预测函数控制 模糊神经网络 预测模型 非线性控制 predictive function control fuzzy neural network prediction model nonlinear control
  • 相关文献

参考文献9

二级参考文献44

  • 1潘红华,苏宏业,胡剑波,褚健.预测函数控制及其在导弹控制系统中的应用[J].火力与指挥控制,2000,25(2):56-59. 被引量:26
  • 2房方,谭文,刘吉臻.机炉协调系统的非线性输出跟踪控制[J].中国电机工程学报,2005,25(1):147-151. 被引量:20
  • 3吕剑虹,陈建勤,陈来九.基于自适应神经元模型的火电单元机组负荷控制系统仿真研究[J].中国电机工程学报,1995,15(1):1-7. 被引量:49
  • 4Cherkassky V, Mulier F. Learning from data: concepts, theory and methods [M]. New York: John Wiley and Sons,1998.
  • 5Sjoberg J. Zhang Q. Ljung L. Nonlinear black-box modeling in system identification: a unified overview[J]. Automatica. 1995.31(12) :1691- 1724.
  • 6Vapnik V. The nature of statistical learning theory[M]. NewYork :Springer-Verlag, 1995.
  • 7Vapnik V. Statistical learning theory [M]. New York: John Wiley,1998.
  • 8Osuna E, Freund R. Training support vector machine: an application to face dection [A]. Proceedings to CVPR'97 [C]. Puerto Rico: [s. n.], 1997.130-136.
  • 9Drucker H, Wu D, Vapnik V. Support vector machine for spam categorization [J]. IEEE Trans on Neural Networks, 1999.10(5) : 1048- 1054.
  • 10Suykens K. Nonlinear modeling and support vector machines [A]. IEEE Instrument and Measurement Technology Conference [C]. Budapest : Hungary.2001.

共引文献86

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部