摘要
考虑时标上二阶奇异动力方程:{[φ(u△(t))]▽+a(t)f(u(t))=0,t∈(0,T),u(0)-βu△(0)=γu△(η),u△(T)=0,其中:φ:→是增同胚和正同态,且φ(0)=0;β,γ≥0;0<η<ρ(T);a:[0,T]→[0,+∞)在[0,T]上有可数多个奇点.利用可积性处理奇性,并使用不动点指数定理证明了上述方程存在可数多个正解。
The present paper focuses on the following singular second-order dynamic equation on time scales:{[φ(u△(t))]▽+a(t)f(u(t))=0,t∈(0,T),u(0)-βu△(0)=γu△(η),u△(T)=0,where φ:→ is the increasing homeomorphism and positive homomorphism and φ(0) = 0,β,γ ≥0,0 η ρ(T),a:[0,T]→[0,+ ∞) has countably many singularities in [0,T].We dealt with the singularity utilizing the integration,and investigated the existence of countably many positive solutions to the equation with the fixed point index theory.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2010年第5期749-754,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10826042)
关键词
动力方程
时标
奇性
正解
不动点指数
dynamic equation
time scale
singularity
positive solution
fixed-point index