摘要
针对虹膜识别中使用传统归一化方法时,无法突出主要纹理信息,并且由于提取数据量大导致特征提取阶段计算复杂的缺陷,提出一种基于感兴趣区域(ROI)的虹膜归一化方法,先利用主成分分析(PCA)方法提取主元,实现进一步的降维和去噪,再使用独立分量分析(ICA)进行训练形成ICA/PCA虹膜特征提取算法,最后使用余弦距分类器对待测样本进行分类.实验结果表明,该方法识别率为98.11%,识别时间小于70ms。
In view of the shortcomings of redundant data leading to computational complexity of feature extraction after traditional normalization in iris recognition and weakening of main texture information,we introduced the ROI-based iris normalization means and used PCA to extract principal component to reduce the dimension and remove noise further,then trained feature vectors using ICA to make ICA /PCA iris feature extraction algorithm;finally used cosine distance classifier to identify testing samples.Experimental recognition rate was reached up to 98.11%,and recognition time was less than 70 ms.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2010年第5期793-798,共6页
Journal of Jilin University:Science Edition
基金
国家电子发展项目基金(批准号:财建[2009]537号)
关键词
模式识别
虹膜识别
感兴趣区域
pattern recognition
iris recognition
region of interest(ROI)