期刊文献+

线弹性平板问题的两步最小二乘法有限元

Two Step Least- Square Finite Element Method for Linear Elasticity Plate Problem
下载PDF
导出
摘要 用标准有限元求解椭圆边值问题,特别是含有多个变量的偏微分方程组时,由标准方法推导出的变分问题经常会出现鞍点问题,这将使得对应的离散化的代数问题是无限维的,给数值求解带来巨大困难;最小二乘有限元方法不会出现鞍点问题,但是在求解时,其产生大的半带宽会带来更大的运算量及求解结果的不精确;为解决上述问题,并取得最佳逼近解,给出了线弹性平板问题的两步最小二乘有限元方法,并对该方法进行了数值分析,并通过算例,验证了该方法的正确性。 When elliptical boundary value problems which specially include multi-variable are solved by standard finite element,their variation often occur saddle-point problem which make discrete algebra problem be infinite dimension,so numerical approximation is very difficult.Least-square finite element is not needed to subject LBB condition,due to generating larger semi-bandwidth induce numerical solution inaccuracy.In order to avoid this problem and get optimal approximation numerical solution,in this paper,we give two step least-square finite element algorithm for linear elastic problem,and do numerical analysis for this scheme.Then by numerical test,the method is valid.
出处 《装备制造技术》 2010年第8期55-58,共4页 Equipment Manufacturing Technology
基金 国家自然科学基金资助项目(10471109)
关键词 线弹性问题 最小二乘有限元 L-BB条件 数值分析 linear elastic problem least-square FEM LBB condition numerical analysis
  • 相关文献

参考文献6

  • 1S.Y.Yang,J.L.Liu.Least-squares Finite Element Methods for the Elasticity Problem[J].Journal of Computational and Applied Mathematics,18 December 1997,Volume 87,Issue 1,Pages 39-60.
  • 2V.Girauh,P.Raviart.Finite Element Methods for Navier-Stokes Equations[M].Berlim Springer.1986.
  • 3M Gunzburger.Finite Element Methods for Viscous Incompressible Flow[M].Boston:Academic.1989.methods for elliptic systems Math Comput.44.1985.
  • 4George J.Fix,Max D.Gunzburger.On finite dement methods of the least squares type[J] ,Computers & Mathematics with Applications,Volume 5,Issue 2,1979,Pages 87-98.
  • 5Z.Q.Cai,T.A.Manteuffel,S.F.Mccormick.First-order System Least Squares for Second-order Partial Differential Equations[J] :SIAM Journal on Numerical Analysis,April 1997,Volume 34,Issue 2,Pages:425-454.
  • 6P.G.Ciarlet.The Finite Element Method for Elliptic Problems[M].North Holland,Amsterdam,1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部