期刊文献+

Jess规则引擎在数据质量分析中的应用

The Application of Jess Rule Engine in Data Quality Analysis
下载PDF
导出
摘要 规则引擎通过将业务规则和开发者的技术决策分离,实现了动态管理和修改业务规则而又不影响软件系统的需求。Jess是一个基于Java的规则引擎,可以方便地嵌入到Java应用程序中。本文论述了Jess规则引擎的核心组成及基于Jess规则的数据质量分析的工作原理,通过实例对基于SQL查询、自定义规则和Jess规则进行了对比分析,得出了Jess规则引擎能够有效地对业务规则进行结构化表示和自动完成数据质量分析的结论。 The regular engine meets the demand of dynamic management and the revision of business rule, and does not affect software system as well through the separation of service rule and exploiter's technical decision-making. Jess is one regular engine based on the Java, may be inserted conveniently into the Java application procedure. This article elaborated the core composition of Jess regular engine and the working principle of data quality analysis based on the Jess rule. With ease study, we made a comparison of self-definition rule based on SQL inquiry and Jess rule, the conclusion is obtained that Jess rule engine could carry on structural representation for business rule effectively and to complete the data quality analysis automatically.
作者 史峰
出处 《杨凌职业技术学院学报》 2010年第3期52-55,64,共5页 Journal of Yangling Vocational & Technical College
关键词 Jess规则引擎 数据质量分析 事实库 规则库 Jess rule engines data quality analysis fact bases rule base
  • 相关文献

参考文献4

二级参考文献101

  • 1韩京宇,徐立臻,董逸生.一种大数据量的相似记录检测方法[J].计算机研究与发展,2005,42(12):2206-2212. 被引量:32
  • 2[1]HEILER S, LEE W C, MITCHELL G. Repository support for metadata-based legacy migration [J]. IEEE Data Engineer Bulletin, 1999,22 (1): 37-42.
  • 3[2]RAHM E, DO H H. Data cleaning: problems and current approaches[J]. IEEE Data Engineer Bulletin, 2000,23(4):3-13.
  • 4[3]GALHARDAS H, FLORESCU D, SHASHA D,et al. Declarative data cleaning: language, model, and algorithms[C]//Proceedings of the 27th VLDB Conference. Roma: Morgan Kaufmann, 2001. 371-380.
  • 5[4]HERNANDEZ M A, STOLFO S J. Real-world data is dirty: data cleansing and the merge/purge problem [J]. Data Mining and Knowledge Discovery, 1998,2 (1): 9-37.
  • 6[5]MONGE A, MATCHING E. Algorithms within a duplicate detection system[J]. IEEE Data Engineer Bulletin, 2000,23(4): 14-20.
  • 7[6]LEE M L, LING T W, LOW W L. IntelliClean: A knowledge-based intelligent data cleaner[C]//Proceeding of the 6th ACM SIGKDD International Conference on Knowledge discovery and Data Mining. Boston: ACM Press, 2000:290-294.
  • 8[7]NAVARRO G. A guided tour to approximate string matching [J]. ACM Computing Surveys, 2001,33 (1): 31-88.
  • 9[8]BUNKE H, JIANG X Y, ABEGGLEN K,et al. On the weighted mean of a pair of strings[J]. Pattern Analysis &Applications, 2002,5(5): 23-30.
  • 10Mauricio A Hernandez, Salvatore J Stolfo. The merge/purge problem for large databases[C]. Sigmod, 1995,8 : 127-138.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部