期刊文献+

一种基于独立分量分析的钞票识别算法

A BANK NOTES RECOGNITION ALGORITHM BASED ON ICA
下载PDF
导出
摘要 提出一种基于独立分量分析的钞票识别算法。先对钞票图像作感兴趣区域(ROI)切割;接着对ROI图像作标准化、白化预处理;然后采用基于负熵独立性判据的固定点方法(FastICA)对预处理后的ROI图像做ICA分离,提取独立基图像,进而获得钞票的特征空间,并构建特征模板;通过计算待识别目标与特征模板的距离实现识别。以第五套人民币作为实验对象进行实验,实验结果表明方法的有效性。 An algorithm of bank notes recognition based on independent component analysis (ICA) is proposed. First the segmentation of rectangle of interesting (ROI) on bank note image was made and followed with pre-processing of data standardization and whitening on ROI images. Then the negentropy independence criterion-based FastICA was adopted to perform ICA division on pre-processed ROI image to extract independent radical images, and further the feature space of bank note was acquired and the feature template was constructed. Bank notes rec- ognition is implemented by calculating the distance between the target to be recognised and the feature template. The approach was tested on a set of 600 Chinese RMB ( version 5 ) bank note images. The experimental results clearly shown the effectiveness of the algorithm proposed in the paper.
出处 《计算机应用与软件》 CSCD 2010年第8期244-247,共4页 Computer Applications and Software
基金 广州市2007年重大科技工程(2007Z1-I0041)
关键词 ICA 模式识别 最近邻分类 白化 独立性判据 ICA Pattern recognition Nearest classify Whitening Independent criterion
  • 相关文献

参考文献15

  • 1Kirby M,Sirovich L.Application of the KL procedure for the characterization of human face[J].IEEE Transaction on Pattern Analysis and Machine Intelligent,1990,12(1):103-108.
  • 2Oja E.P rincipal Components,M ino r Components,and linear neural networks[J].Neural Networks,1992,5(6):927-935.
  • 3Hyvarinen A,Karhumen J,OJA E.Independent Component Analysis[M].New York:Wiley,2001.
  • 4Hyvarinen A,Oja E.One-unit learning rules for independent component analysis[M].Advances in Neural Information Processing Systems.Cambridge,MA:MTT Press,1997:497-502.
  • 5Comon P.Independent Component Analysis,A New Concept[M].Signal Processing,1994,36(3):287-314.
  • 6陈华富,尧德中.独立成分分析及其应用的研究进展[J].生物医学工程学杂志,2003,20(2):366-370. 被引量:19
  • 7杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 8Rinen A H,Oja E.Independent Component Analysis:Algorithms and Applications[J].Neural Networks,2001,13(4/5):411-430.
  • 9Bartlett M S,Movellan J R,Sejnowski T J.Face Recognition by Independent Component Analysis[J].IEEE Transactions on Neural Networks,2002,13(6):1450-1464.
  • 10Girolami M.An Alternative Pewrspective On Adaptive Independent Component Analysis Algorithms[J].Neural Computation,1998,10(8):2103-2114.

二级参考文献30

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3[1]Jutten C, Herault J. Blind separation of source, Part I: An adaptive algorithm based on neuromimetic architecture. SP, 1991, 33∶1
  • 4[3]Xu Y, Yao DZ. A new method for extracting characteristic signal in epileptic EEG. Chinese Journal of Biomedical Engineering(English version), 1999; 8∶41
  • 5[4]Kobayashi K, James CJ, Nakahori T, et al. Isolation of epleptiform discharges from unaverged EEG by independent component analysis. Clinical Neurophysiology, 1999; 110∶1755
  • 6[5]Lee TW, Grolami M, Jbell A, et al. A unifying information-theoretic framework for independent component analysis. Computer and Mathematic with Application. 2000;39∶1
  • 7[6]Comon P. Independent component analysis, a new concept? SP, 1994; 36∶287
  • 8[7]Bell AJ, Sejnowski J. An information maximization approach to blind separation and deconvolution. Neural Comp, 1995; 7∶1129
  • 9[8]Cardoso JF. Infomax and maximum likelihood for blind source separation. IEEE SP Letter, 1997; 4∶112
  • 10[10]Karhunen J, Oja E, Wang L, et al. A Class of neural networks for Independent component analysis. IEEE Trans NN, 1997, 8∶486-503

共引文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部