期刊文献+

结合引力的模糊C-值聚类算法研究 被引量:2

RESEARCH ON FUZZY C-MEANS CLUSTERING ALGORITHM COMBINING GRAVITY
下载PDF
导出
摘要 基于距离的模糊聚类算法是把数据对象视为互相独立的,虽然在一定程度上反映了数据对象间的位置关系,但不能反映多重关系,使计算量急剧增加,时间复杂度高,收敛速度慢。对模糊C-均值聚类算法进行了改进,在原有的模糊C-均值聚类算法基础上,引入了物理学中的万有引力思想,提出了一种基于引力改进的模糊聚类算法。实验分析表明,该算法能够较好地克服基于距离的模糊聚类算法仅考虑单一位置关系的缺点,并且在一定程度上降低了时间复杂度,提高了算法的收敛速度,聚类效果较好。 Distance-based fuzzy clustering algorithm regards data objects as independent objects each other. Although this reflects the loca- tion relationship among data objects to some extent, but it can not reflect multiple relationships, moreover, it causes dramatic increase in computation load, high time complexity and slow convergence rate. This paper proposes an improvement on fuzzy C-mean clustering algorithm, the gravity improvement-based fuzzy clustering algorithm is presented by introducing the idea of universal gravity law in physics on the basis of previous fuzzy C-means clustering algorithms. The analysis on experimental result shows that this algorithm can be used to well overcome the shortcoming of distance-based fuzzy clustering algorithm which only takes single position relation into account. Meanwhile it reduces the time complexity to some degree, improves the algorithm' s convergence rate and achieves better clustering effect.
出处 《计算机应用与软件》 CSCD 2010年第8期271-272,291,共3页 Computer Applications and Software
基金 山西省科技攻关项目(20080321012-01)
关键词 模糊聚类 模糊C-均值 距离 引力 Fuzzy clustering Fuzzy C-means Distance Gravity
  • 相关文献

参考文献7

二级参考文献25

  • 1蒋盛益,李庆华.一种基于引力的聚类方法[J].计算机应用,2005,25(2):286-288. 被引量:9
  • 2姜亚莉,关泽群.用于Web文档聚类的基于相似度的软聚类算法[J].计算机工程,2006,32(2):59-61. 被引量:6
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4Kennedy J,Eberhart R C.Particle Swarm Optlmization.Proc.[R].IEEE Int,Lconf.on Neural Networks.IEBE Service Center,Pisca-taway,NJ,1995(4):1942-1948.
  • 5Fukuyama Y.Fundamentals of Particle Swarm Techiques[A].Lee K Y,El-Sharkawi M A,Modern Heuristic Optimization Techniques With Applications to Power Systems[C].IEEE Power Engineering Society,2002:45-51.
  • 6Eberhart R C,Shi Y.Particle Swarm Optimization:Developments,Applications and Resources[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].Piscataway,NJ:IEEE Service Center,2001:81-86.
  • 7He Z,Wei C,Yang L,et al.Extracting Rules from Fuzzy Neural Network by Particle Swarm Optimization[A].proceedings of IEEE Congress on Evolutionary Computation[C].Anchorage,Alaska,USA,1998:74-77.
  • 8Zadeh L A.Fuzzy sets[J].Inf Cont, 1965(8) :338-353.
  • 9GUHA S, RASTOGI R, SHIM K. ROCK: A robust clustering algorithm for categorical attributes[ A]. In proceedings of the 15th ICDE[C], 1999.512-521.
  • 10GANTI V, GEHRKE J, RAMAKRISHNAN R. Cactus- clustering categorical data using summaries[ A]. In Proc 1999 Int Conf Knowledge Discovery and Data Mining[ C], 1999.73 -83.

共引文献45

同被引文献35

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 2Xu R, Wunsch D. Survey of Clustering Algorithms [J]. IEEE Transactions on Neural Networks (S1045-9227), 2005, 16(3): 645-678.
  • 3Jain A K. Data Clustering: 50 Years beyond K-means [J]. Pattern Recognition Letters (S0167-8655), 2010, 31 (8): 651-666.
  • 4Modha D S, Spangler W S. Feature Weighting in K-means Clustering [J]. Machine Learning (S0885-6125), 2003, 52(3): 217-237.
  • 5Xie J Y, Jiang S, Xie W, et al. An Efficient Global K-means Clustering Algorithm [J]. Journal of Computers (S 1796-203X), 2011, 6(2): 271-279.
  • 6Shahnewas S. M, Rahman M A, Mahmud H. A Self Acting Initial Seed Selection Algorithm for K-means Clustering Based on Convex-Hull [M]. Informatics Engineering and Information Science, Germany: Springer Berlin Heidelberg, 2011:641-650.
  • 7Cai W L, Chen S C, Zang D Q. Fast and Robust Fuzzy C-means Clustering Algorithms Incorporating Local Information for Image Segmentation [J]. Pattern Recognition (S0031-3203), 2007, 40(3):825-833.
  • 8Hung C C, Kulkami S, Kuo B C. A New Weighted Fuzzy C-means Clustering Algorithm for Remotely Sensed Image Classification [J]. IEEE Journal of Selected Topics in Signal Processing (S1932-4553), 2011, 5(3): 543-553.
  • 9Chaira T. A Novel Intuitionistic Fuzzy C means Clustering Algorithm and Its Application to Medical Images [J]. Applied Soft Computing (S1568-4946),2011,11(2):1711-1717.
  • 10Keller J M, Krishnapuram R. A Possibilistic Approach to Clustering [J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 1993, 1(2): 98-110.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部