期刊文献+

非线性侵彻动力过程的再生核质点法 被引量:1

An improved reproducing kernel particle method for nonlinear dynamical penetration process
下载PDF
导出
摘要 通过在再生核质点法中引入Johnson-Cook本构方程及损伤模型,并利用新型的滑移面算法及配点法解决再生核质点法中的接触面和质点滑移问题,方便实现边界条件和计算过程中质点速度调整。通过侵彻过程再生核质点法研究,实现了弹丸侵彻靶板过程的模拟分析,避免了有限元法中单元严重变形和破坏过程的网格重构困难,提高了分析精度和计算速度,可方便模拟侵彻的大变形和高应变率现象。 The Johnson-Cook constitutive relations and damage model were introduced into the reproducing kernel particle (RKP) method, and a new interface calculation method and a collocation method were proposed to solve the problems of interface and gliding particles, realize the boundary conditions and adjust the particle velocity in the computational process. The improved RKP method was applied to numerically analyze the oblique penetration process of a steel cylindrical pellet into a fixed steel plate. In the computation, the pellet and target plate were divided into kernel particles other than elements. Computational results show that the improved RKP method can avoid the finite element deformation in the finite element method and the element reconstruction in the damage process and enhance analysis accuracy and computational speed. And the improved RKP method can be used to conveniently analyze the large deformation and high strain rate phenomena in penetration process.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2010年第4期355-360,共6页 Explosion and Shock Waves
基金 国家自然科学基金项目(50804003) 教育部新世纪优秀人才支持计划项目 安徽省优秀青年科技基金项目(08040106831) 高校省级自然科学研究项目(KJ2008A125)~~
关键词 爆炸力学 侵彻 再生核质点法 高速冲击 非线性 mechanics of explosion penetration RKPM high speed impact nonlinearity
  • 相关文献

参考文献10

  • 1宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法[J].爆炸与冲击,2003,23(1):56-60. 被引量:33
  • 2宋顺成,李国斌,才鸿年,王富耻.战斗部对混凝土先侵彻后爆轰的数值模拟[J].兵工学报,2006,27(2):230-234. 被引量:6
  • 3Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977,82: 1013-1024.
  • 4Hayhurst C J, Clegg R A. Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates[J]. International Journal of Impact Engineering, 1997,20 : 337-348.
  • 5Dancygier A N, Yankelevsky D Z. High strength concrete response to hard projectile impact[J]. International Journal of Impact Engineering, 1996,18(6) : 583-599.
  • 6Liu W K, Jun S, Zhang Y F. Reproducing kernel particle method[J]. International Journal for Numerial Methods in Fluids, 1995,20(8-9) :1081-1106.
  • 7Liu W K, Jun S, Li S F, et al. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerial Methods in Engineering, 1995,38(10): 1655-1679.
  • 8Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure[C]//14th International Symposium on Ballistics. USA: American Defense Preparedness Association, 1993 : 591-600.
  • 9赵光明,宋顺成,杨显杰.高速冲击过程数值分析的再生核质点法[J].力学学报,2007,39(1):63-69. 被引量:6
  • 10马晓青.冲击动力学[M].北京:北京理工大学出版社,1991.

二级参考文献36

  • 1史宝军,袁明武,李君.基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706. 被引量:12
  • 2[1]Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astron J, 1977,88(10):1013-1024.
  • 3[2]Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J].Monthly Notices R Astron Soe, 1977,181(4):375-389.
  • 4[3]Libersky L D, Petsehek A G. Smoothed particle hydrodynamics with strength of materials[J]. Advances in the Free Lagrange Method, Lecture Notes in Physics, 1990,395(3):248-257.
  • 5[4]Gingold R A, Monaghan J J. Shock simulation by the particle method SPH[J]. J Comput Phys, 1983,52(4) :374-389.
  • 6[5]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure[A]. 14th Int Symposium on Ballistics[C]. USA: American Defense Prepareness Association, 1993:591-600.
  • 7[6]Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. Int J Impact Engng, 1996,18(5) :466-476.
  • 8[7]Marsh S P. LASL shock Hugoniot data[M]. California: University of California Press, 1980.
  • 9[8]Beissel S R, Johnson G R. An abrasion algorithm for projectile mass loss during penetration[J]. Int J Impact Engng, 2000,24(2) :103-116.
  • 10Lucy L B.A numerical approach to the testing of the fission hypothesis[J].Astron J,1977,88(10):1013-1024.

共引文献46

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部