期刊文献+

船舶动力定位系统的广义预测控制方法研究 被引量:15

Research on Generalized Predictive Control Algorithm in Ship Dynamic Positioning System
下载PDF
导出
摘要 船舶在海上的航行是一种复杂的非线性运动,其水动力参数很难精确确定,并且会遭遇来自风、流和浪的随机干扰;因此,船舶须要具有鲁棒性和自适应能力的动力定位系统。鉴于广义预测控制算法在非线性控制方面的独特优势以及神经网络具有自学习和自适应的能力,作者研究了基于支持向量机的广义预测混合控制算法,并将其应用于船舶动力定位系统。仿真结果表明,该方法具有较好的鲁棒性和自适应性,提高了动力定位系统的精度和性能。 Ship motion is complicated and nonlinear during voyage course.It is fairly difficult to determine the hydrodynamic parameters related to ship motion,which may be disturbed randomly by wind,current and wave.Therefore,it is necessary for ship to be equipped with Dynamic Positioning System possessing robust and adaptive properties.In view of the superiority of Generalized Predictive Control in nonlinear control and neural networks in self-learning and adaptability,the hybrid algorithm of Generalized Predictive Control based on Support Vector Machine is studied in this paper.This algorithm has been applied to ship dynamic positioning system.It is shown that in the study case the algorithm has better robust and adaptive properties and the System precision and performance of dynamic positioning are improved.
作者 齐亮 俞孟蕻
出处 《中国造船》 EI CSCD 北大核心 2010年第3期154-161,共8页 Shipbuilding of China
基金 江苏省高新技术研究计划项目(项目编号:BG2007031) 江苏省高校科研成果产业化推进项目(项目编号:JH09-23)
关键词 船舶 动力定位 支持向量机 广义预测控制 ship dynamic positioning system(DPS) support vector machine(SVM) generalized predictive control(GPC)
  • 相关文献

参考文献4

二级参考文献12

  • 1李定,顾懋祥.自适应神经网络用于船舶动力定位系统[J].中国造船,1995,36(4):20-28. 被引量:6
  • 2Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joint[J].International Journal of Fatigue,2000,22:369~387.
  • 3Balchen J G,Jenssen N A and Saelid S.Dynamic positioning using Kalman filtering and optimal control theory[A].IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation[C].1976,183~188.
  • 4Grimble M J,Patton R J and Wise D A.The design of DP control systems using extended Kalman filtering techniques[A].Oceans 79(IEEE)[C].San Diego,California:1979,488~497.
  • 5Zhang Y,Hearn G E and Sen P.A neural network approach to ship trackinh-keeping control[J].IEEE Journal of Oceanic Engineering,1996,21(4):513~527.
  • 6Burns R S.The use of artificial neural networks for the intelligent optimal control of surface ships[J].IEEE Journal of Oceanic Engineering,1995,20(1):65~72.
  • 7Farag W A,Quintana V H and Torres G L.A genetic-based neuro-fuzzy approach for modelling and control of dynamical systems[J].IEEE Transactions on Neural Networks,1998,9(5):756~767.
  • 8Ku C C and Lee K Y.Diagonal recurrent neural network-based control:convergence and stability[A].Proc.American Control Conf.[C].Baltimore,MD,June 1994,3340~3345.
  • 9Ku C C and Lee K Y.Diagonal recurrent neural networks for dynamic systems control[J].IEEE Trans.Neural Networks,1995,6(1):144~155.
  • 10Xia G Q et al.Feedforward neural network controller application to marine dynamic positioning systems[A].CNNSP[C].Nanjing,China:1995,538~541.

共引文献79

同被引文献62

引证文献15

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部