期刊文献+

环丙沙星在大鼠体内的生理药动学模型的血流图设计 被引量:2

Rheogram of Physiologically Based Pharmacokinetic Model of Ciprofloxacin in Rats in vivo
下载PDF
导出
摘要 【目的】建立更能准确预测环丙沙星在大鼠体内药物浓度经时变化的生理药动学模型。【方法】通过搜集环丙沙星的理化性质、药动学特点及大鼠的生理生化参数,根据生理学和解剖学知识及质能守恒定律,对模型进行了必要的前提假设。【结果】成功设计了环丙沙星在大鼠的生理药动学模型的血流图。【结论】血流图的成功设计,为环丙沙星在大鼠的生理药动学模型的建立奠定了良好的基础。 Objective The objective of the study is to develop a physiologically based pharmacokinetic model for ciprofloxacin in rats to predict drug concentration changed with time more accurately.Method Through collecting the physico chemical properties and pharmacokinetic characteristics of ciprofloxacin,and the physiological and physiochemical parameters of rats,a model was hypothesized according to physiology and anatomy and mass-energy conservation laws.Result Rheogram of physiologically based pharmacokinetic model of ciprofloxacin in rats was designed successfully.Conclusion The successful design of rheogram has laid a good foundation for establishment of the physiologically based pharmacokinetic model of ciprofloxacin in rats.
出处 《中国农业科学》 CAS CSCD 北大核心 2010年第18期3857-3861,共5页 Scientia Agricultura Sinica
基金 国家自然科学基金项目(30771629 30972219) 中国博士后科学基金(20080440762)
关键词 环丙沙星 生理药动学模型 血流图 ciprofloxacin physiologically based pharmacokinetic model rheogram
  • 相关文献

参考文献26

  • 1Knobloch M, Portier C J, Levionnois O L, Theurillat R, Thormann W, Spadavecchia C, Mevissen M. Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion. Toxicology and Applied Pharmacology, 2006, 216(3): 373-386.
  • 2Gentry P R, Covington T R, Clewell H J 3rd, Anderson M E. Application of a physiologically based pharmacokinetic model for reference dose and reference concentration estimation for acetone. Journal of Toxicology and Environmental Health, 2003, (66): 2209-2225.
  • 3陈小全,周秀艳,左之利,邵辉莹.环孢菌素A的生理药物动力学模型[J].西南民族大学学报(自然科学版),2005,31(5):766-768. 被引量:4
  • 4Boyes W K, Bercegeay M, Oshiro W M, Krantz Q T, Kenyon E M, Bushnell P J, Benignus V A. Acute perchloroethylene exposure alters rat visual evoked potentials in relation to brain concentrations. Toxicological Sciences, 2009, 108(1): 159-172.
  • 5Buur J L, Baynes R L, Smith G, Riviere J, Use of Probabilistie modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine. Antimicrobial Agents and Chemotherapy, 2006, 50(7): 2344-2351.
  • 6Craigmill A L. A physiologically based pharmacokinetic model for oxytetracycline residues in sheep. Journal of Veterinary Pharmacology and Therapeutics, 2003, 26(1 ): 55-63.
  • 7Buur J L, Baynes R E, Riviere J E. Estimating meat withdrawal times in pigs exposed to melamine contaminated feed using a physiologically based pharmacokinetic model. Regulatory Toxicology and pharmacology, 2008, 51(3): 324-331.
  • 8Germani M, Crivori P, Rocchetti M, Burton P S, Wilson Alan G E, Smith M E, Poggesi L. Evaluation of a basic physiologically based pharmacokinetic model for simulating the first-time-in-animal study. European Journal of Pharmaceutical Sciences, 2007, 31(3-4): 190-201.
  • 9Lu Y S, Rieth S S, Lohitnavy M, Dennison J, EI-Masri H, Barton H A, Bruckner J, Yang R S. Application of PBPK modeling in support of the derivation of toxicity reference values for 1, 1, 1-trichloroethane. Regulatory Toxicology and Pharmacology, 2008, 50(2): 249-260.
  • 10Doerge D R, Young J F, Chen J J, Dinovi M J, Henry S H. Using dietary exposure and physiologically based pharmacokinetic/ pharmacodynamic modeling in human risk extrapolations for acrylamide toxicity. Journal of Agricultural and Food Chemistry, 2008, 56(15): 6031-6038.

二级参考文献57

  • 1Johannes H Proost, J Mark K H Wierda, Dirk K F Meijer. An extended pharmacokinetic model describing quantitatively the influence of plasma protein binding, tissue binding, and receptor binding on the potency and time course of action of drugs[J]. J Pharm Biopharm, 1996, 24(1): 45-56.
  • 2Willi Cawell, Tammy Autonucci. The correlation between pharmacodynamics and pharmacokinetics: Basics of pharmacodynamicspharmacokinetics modeling[J]. J Clin Pharmacol, 1997, 37: 65-69.
  • 3Kyungsoo Park, Davide Verotta. Use of a pharmacokinetic/pharmacodynamic model to design an optimal dose input profile[J]. J Pharmacokinet Biopharm, 1998, 26(4): 471-491.
  • 4Corley K A, Gordon S M, Wallace L A. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absoption of chlooform by humans following bath water exposures[J]. Toxicological Science, 2000, 53(1): 13-23.
  • 5A Vickers, V Fischer. Cyclosporine A metablosim in human liver, kidey, and intestine slices: Comparison to rat and dog slices and human cell lines[J]. Drug Metab Dispos, 1992, 20: 802-809.
  • 6Jepson GW,Hoover DK,Black RK,et al.A partition coefficient determination method for nonvolatile chemicals in biological tissues[J].Fundam Appl Toxicol,1994,22:519-524.
  • 7Sato A,Nakajima T.A vial-equilibration method to evaluate the drugmetabolizing enzyme activity for volatile hydrocarbons[J].Toxicol Appl Pharmacol,1979,47:41-46.
  • 8Staats DA,Fisher JW,Connolly RB.Gastrointestinal absorption of xenobiotics in physiologically based pharmacokinetic models.A two-compartment description[J].Drug Metab Dispos,1991,19:144-148.
  • 9Bungay PM,Dedrick RL,Matthews HB.Enteric transport of chlordecone (Kepone) in the rat[J].J Pharmacokinet Biopharm,1981,9:309-341.
  • 10Cong D,Doherty M,Pang KS.A new physiologically based,segregated-flow model to explain route-dependent intestinal metabolism[J].Drug Metab Dispos,2000,28:224-235.

共引文献14

同被引文献35

  • 1丁焕中,曾振灵.生理药动学模型及其在兽医药理学研究中的应用[J].动物医学进展,2007,28(9):55-59. 被引量:8
  • 2Yang F, Liu H W, Li M, et al. Use of a Monte Carlo ana- lysis within a physiologically based pharmacokinet- ic model to predict doxycycline residue withdrawal time in edible tissues in swine[J].Food Addit Con-tam Part A Chem Anal Control Expo Risk Assess, 2012, 29(1) :73-84.
  • 3Cortright K A, Wetzlich S E, Craigmill A L.A PBPK model for midazolam in four avian species [J].J Vet Phar- macol Ther, 2009,32(6):552-565.
  • 4Maclachlan D J. Physiologically based pharmacokinet- ic (PBPK) model for residues of lipophilic pestici- des in poultry[J].Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2010,27(3):302-314.
  • 5Macachlan D J. Influence of physiological status on residues of lipophilic xenobiotics in livestock[J]. Food Addit ContamPart A Chem Anal Control Expo Risk Assess, 2009,26(5):692-712.
  • 6Hekman P, Schefferlie G J. Kinetic modelling and re- sidue depletion of drugs in eggs[J].Br Poult Sci, 2011,52(3):376-380.
  • 7Pollet R A, Glatz C E, Dyer D C. The pharmacokinetics of chlortetracycline orally administered to turkeys: influence of citric acid and Pasteurella multocida infection [J].J Pharmacokinet Biopharm, 1985,13 (3): 243-264.
  • 8Wideman R J, Maynard P, Bottje W G. Venous blood pre- ssure in broilers during acute inhalation of five percent carbon dioxide or unilateral pulmonary artery occlusion[J].Poult Sci, 1999,78(10):1443-1451.
  • 9Afifi N A, Abo E K. Tissue concentrations and phar- macokineties of florfenieol in broiler chickens[J]. Br Poult Sci, 1997,38(4):425-428.
  • 10Anadon A, Martinez M A, Martinez M, et al. Plasma and tissue depletion of florfenicol and florfenicol- amine in chickens[J].J Agric Food Chem, 2008,56(22): 11049-11056.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部