期刊文献+

含有动态输入不确定性的随机非线性系统的鲁棒控制 被引量:1

Robust control of stochastic nonlinear systems with input dynamic uncertainties
下载PDF
导出
摘要 针对一类含有动态输入不确定性的随机非线性系统,从无源性的观点研究了鲁棒控制理论.特别地,将确定性系统中基于无源性的系统设计法推广到该类不确定随机系统中,并以此作为基础给出了该类系统的鲁棒镇定控制器设计方法.与传统的基于系统模型三角形结构的设计方法不同,对于一个一般的系统,也能给出其具体的控制器形式.设计过程主要分两部分,首先给出一类反馈连接形式的随机非线性系统满足无源性的充分条件,在对系统进行合理的设定和分析的基础上,基于此条件对于随机系统在输入通道出现动态不确定性的情况下构造出一种状态反馈控制律,使得闭环系统满足无源性,从而是渐进稳定的;然后,将该无源控制律设计方法扩展到系统同时含有动态和静态模型不确定性的情况.仿真结果验证了设计方法的有效性. From the viewpoint of passivity, robust control theory was developed for a class of stochastic nonlinear systems with input dynamic uncertainties. In particular, the passivity-based systematic design approach associated with deterministic nonlinear systems is introduced for this type of uncertain stochastic system, and is used to address the robust control design problems. Different from the classical design approach that focuses triangular systems, the control law can be constructed for general systems not restricted to strict-feedback systems. The design procedure mainly contains two parts. Firstly, a stochastic passivity condition is presented for a stochastic non-linear system in feedback interconnection form, and after some proper assumptions and analysis, a state feedback control law is designed under this condition for a type of stochastic nonlinear system in the presence of input dynamic uncertainties. Then, the passivity control law is extended to the stochastic non-linear system with both static model uncertainties and dynamic uncertainties. Simulation results illustrate its effectiveness.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第8期854-862,共9页 JUSTC
基金 高等学校博士学科点专项科研基金(20050358044) 国家自然科学基金(60674029)资助
关键词 随机非线性系统 鲁棒无源性 动态输入不确定性 stochastic nonlinear systems robust passivity input dynamic uncertainty
  • 相关文献

参考文献21

  • 1Krsti(c) M,Sun J,Kokotovi(c) P V.Robust control of nonlinear systems with input unmodeled dynamics[J].IEEE Transactions on Automatic Control,1996,41(6):913-920.
  • 2Praly L.Commande adaptative indirecte multivariable:stabilité et robustesse[D].Colloque National du CNRS,Belle-lle,1982.
  • 3Jiang Z P,Pomet J B.A note on "Robust Control of Nonlinear Systems with Input Unmodeled Dynamics"[R].INRIA Report,June,1994:2 293.
  • 4Jiang Z P,Mareels I,Pomet J B.Controlling nonlinear systems with input unmodeled dynamics[C] // Proceedings of 35th IEEE Conference on Decision and Control.Kobe,Japan:IEEE Press,1996:805-806.
  • 5Krsti(c) M,Kokotovi(c) P V.On extending the Praly-Jiang-Teel design to systems with nonlinear input unmodeled dynamics[R].Center for Control Engineering and Computation.Santa Barbara:University of California,1994:94-021.
  • 6Praly L,Wang Y.Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability[J].Mathematics of Control Signals and Systems,1996,9(1):1-33.
  • 7Jiang Z P,Mareels I.A small-gain control method for nonlinear cascaded systems with dynamics uncertainties[J].IEEE Transactions on Automatic Control,1997,42(3):292-308.
  • 8Jankovi(c) M,Sepulchre R,Kokotovi(c) P V.CLF based designs with robustness to dynamic input uncertainties[J].Systems and Control Letters,1999,37(1):45-54.
  • 9Hamzi B,Praly L.Ignored input dynamics and a new characterization of control Lyapunov functions[J].Automatica,2001,37(6):831-841.
  • 10Arcak M,Kokotovi(c) P.Robust nonlinear control of systems with input unmodeled dynamics[J].System and Control Letters,2000,41(2):115-122.

二级参考文献18

  • 1Berman N and Shaked U. H∞-like control for nonlinear stochastic systems. Systems Control Letters, 2006, 55: 247-257.
  • 2James M R. A partial differential inequality for dissipative nonlinear systems. Systems Control Letters, 1993, 21: 315-320.
  • 3van der Schaff A J. L2-Gain and Passivity Techniques in Nonlinear Control. Communication and Control Engineering, Spinger-Verlag, 2000.
  • 4Florchinger P. Stablization of passive nonlinear stochastic differential systems by bounded feedback. Stochastic Analysis and Application, 2003, 21: 1255-1282.
  • 5Marino R and Tomei P. Nonlinear Control Design. New York: Springer, 1995.
  • 6Willems J C. Dissipative dynamical systems-part I: General theory. Arch. Rational Mech. Anal, 1972, 45: 321-351.
  • 7Hasminskii R H. Stochastic Stability of Differential Equation. Sijthoff and Noordhoff, 1980.
  • 8Helton J W and James M R. Extending H^∞ Control to Nonlinear Systems: Control of Nonlinear Systems to Achieve Performance Objectives. SIAM Advances in Design and Control Series, 1999.
  • 9Ball J A, Helton J and Walker M. H∞ optimal control for nonlinear system via output feedback. IEEE Trans. Automat. Control, 1993, 38: 549-559.
  • 10Isidori A and Astolfi A. Disturbance attenuation and H∞ control via measurement feedback in nonlinear systems. IEEE Trans. Automat. Control, 1992, 37: 1283-1293.

共引文献1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部