期刊文献+

痕量铜的流动注射-固相萃取-光度法测定 被引量:4

Determination of Trace Amounts of Copper Using a Catalytic Kinetic Spectroscopy Coupled with On-line Flow Injection and Solid-phase Extraction
下载PDF
导出
摘要 根据在酸性介质中,Cu2+对溴酸钾氧化藏红T的反应具有催化作用,利用自制的二苯卡巴腙功能键合硅胶做固相萃取固定相,联用流动注射样品处理技术,建立了在线选择性固相萃取催化动力学流动注射光度法测定痕量Cu2+的新方法。研究了富集时间、反应管长、富集和洗脱流速、反应介质及洗脱液、试剂浓度、反应温度和共存物质的影响。在最佳实验条件下,对铜测定的线性范围为0.0010~0.60mg/L,检出限为7.9×10-4mg/L。在线分离富集后分析方法的灵敏度提高20多倍,允许干扰物质存在的倍率提高了近10倍。11次重复测定的相对标准偏差小于2.6%。一份样品溶液从分离富集处理到测定,仅需6min和6mL试剂。方法已用于中药和茶叶中痕量铜的测定。 A new flow-injection catalytic kinetic spectroscopy was developed for the determination of Cu^2+ based on its catalytic activity on the oxidation of safranine T by potassium bromate in sulfuric acid solution.Cu^2 + can be separated and enriched on-line by using a customer designed 1,5-diphenylcarbazone grafted silica gel micro-column coupled with flow injection technology.The determination conditions including the enrichment time,coil length,flow rates of sample,type of eluent,reaction medium,amounts of all reagents, reaction temperature and effects of external ions,were optimized.Under these conditions,the linear range of the concentration determination curve is 0.0010~0.60 mg/L and the detection limit is 7.9×10^-4 mg/L.The sensitivity was improved by 20 times and the permitted amounts of some external ions were enhanced at least 10 times than that of a non-preconcentrated step method.The relative standard deviation of eleven replicate measurements is less than 2.6% .One assay cycle only takes 6 min and the total volume of reagents consumed is 6.0 mL.This established method has been applied for the determination of trace amounts of copper in Chinese traditional medicine and tea.
出处 《应用化学》 CAS CSCD 北大核心 2010年第9期1088-1092,共5页 Chinese Journal of Applied Chemistry
基金 高等学校博士学科点专项科研基金项目(200804760004) 河南省科技攻关计划重点项目(072102320007)
关键词 固相萃取 催化动力学 流动注射光度法 solid-phase extraction catalytic kinetic flow injection spectroscopy copper
  • 相关文献

参考文献13

  • 1Anthemidis A N,Loannou K L G.Talanta[J],2009,79(1) 86.
  • 2Faraji M,Yamini Y,Shariati S.J Hazard Mater[J],2009,166(2/3):1383.
  • 3Betelu S,Vautrin-UI C,Chaussé A.Electrochem Commun[J],2009,11(2):383.
  • 4Rocha S A N,Dantas A F,Jaeger H V,Costa A C S,Leo E S,Gonalves M R.Spectrochim Acta Part A[J],2008,71(4):1414.
  • 5Giokas D L,Paleologos E K,Veltsistas P G,Karayannis M I.Microchim Acta[J],2002,140(1/2):81.
  • 6李超,张勇,吴丹,丁玉龙,魏琴,欧庆瑜.催化动力学光度法测定痕量铜的研究进展[J].分析测试技术与仪器,2003,9(4):216-226. 被引量:6
  • 7Kojima L,Katsuzaki M.Anal Sci[J],1997,13:1021.
  • 8Demirbas A,Pehlivan E,Gode F,Altun T,Arslan G.J Colloid Interface Sci[J],2005,282(1):20.
  • 9黄骏雄.环境样品前处理技术及其进展(一)[J].环境化学,1994,13(1):95-104. 被引量:49
  • 10Zhang Y H,Yang G Y,Hu Q F,Yin J Y,Zhong L.Microchim Acta[J],2004,146(3/4):297.

二级参考文献125

共引文献76

同被引文献53

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部