期刊文献+

用于最大似然2-DOA估计的裂变粒子群算法 被引量:4

FPSO algorithm for the ML estimation of 2-DOA
下载PDF
导出
摘要 最大似然2-DOA估计是一种抗干扰能力强、精确度高的测向算法。对其目标函数求解时容易收敛到局部最优解,最终影响最大似然2-DOA估计的性能。考虑到粒子群(PSO)算法具有全局化寻优能力及计算量巨大的特点,本文提出了一种裂变粒子群(FPSO)算法,在保证全局化寻优能力的同时大大降低计算量。但当2-DOA估计环境恶劣时FPSO算法仍然需要较大的迭代次数才能达到一定的2-DOA估计精度。为了进一步降低计算量,提出了改进的FPSO算法。其采用AP算法初始化全局最优粒子,精确了初始化精度从而降低精确2-DOA估计所需的迭代次数。仿真证明,FP-SO算法和改进的FPSO算法能够分别在AWGN信道和短波信道下以较低的计算量实现精确的2-DOA估计,其均方根误差逼近其CRB。 the Maximum Likelihood 2-DOA estimation is a kind of method which is high accurate and applicable in situation with coherent signals and low SNR. The root of its ML function is difficult to get, which is likely to converge to local optimized root. Allo- wing for that PSO method has characteristics of converging to global optimized root and enormous computational complexity, a new meth- od named FPSO is proposed in this paper, which greatly lower the computational complexity and keep the property of global conver- gence. However, if FPSO algorithm wants to arrive at highly 2-DOA estimation accurate when signals suffer form muhi-path effect, it needs to larger its iteration number. In order to get much lower computation, a modified FPSO method is put forward. It costs lower computation in above bad condition because of the more accurate initialization of global optimum particle get from AP algorithm. Simula- tions prove that FPSO and modified FPSO algorithm could accomplish accurate 2-DOA estimation at a cost of low computational complex- ity respectively in AWGN and HF channel. Meanwhile, their RMSE approximate each CRB with increase of SNR mid the number of iteration.
出处 《信号处理》 CSCD 北大核心 2010年第8期1181-1186,共6页 Journal of Signal Processing
关键词 粒子群算法 AP算法 确定性信号的最大似然估计 短波信道 PSO algorithm AP algorithm DML HF channel
  • 相关文献

参考文献7

二级参考文献17

  • 1郭海燕,金鑫,胡小兵.基于微粒群优化的非线性方程组求解研究[J].计算机工程与应用,2006,42(15):72-74. 被引量:17
  • 2Maroti M, Kusy B, Balogh G, et al. Radio Interferometric Geolocation[C]. Proceedings of 3rd International Confer ence on Embedded Networked Sensor Systems (SenSys), San Diego, California, USA, Nov 2-4. 2005: 1-12.
  • 3Patwari N, Hero III AO. Indirect Radio Interferometric Localization via Pairwise Distances[C]. Proceedings of 3rd IEEE Workshop on Embedded Networked Sensors (EmNets 2006) , Boston, MA, May 30-31, 2006: 26-30.
  • 4Rui Huang, Zaruba V, Huber M. Complexity and Error Propagation of Localization Using Interferometric Ranging [C]. Communications, 2007. ICC'07. IEEE International Conference. Glasgow, Scotland, June 24 28, 2007:3063- 3069.
  • 5Kusy B, Ledeczi A, Marotiand M. Node-Density Independent Localization[C]. Proceeding of the 5th International Conference on Information Processing in Sensor Networks (IPSN06), Nashville, Tennessee, USA, April 19-21, 2006: 441-448.
  • 6Patwari N, Hero A, Ash J. Locating the nodes: cooperative geolocation of wireless sensors[J].IEEE Signal Processing Magazine, 2005, 22(4): 54-69.
  • 7Woerner Brian D, Reed Jeffrey H, Rappaport Theodores S. Simulation issues for future wireless modems[J]. IEEE Trans. on CM, 1994,7:42-53.
  • 8Watterson Clark C, Juroshek John R, Bensema William D. Experimental confirmation of an HF channel model[J]. IEEE, 1970,12:792-803.
  • 9SCHMIDT R O. Multiple emitter location and signal parameter estimations [J]. IEEE Trans on AP, 1986, 34 (3):276-280.
  • 10KUMARESAN R, TUFTS D W. Estimating the angle of multiple plane waves[J]. IEEE Trans on AES, 1983, 19(1):134-139.

共引文献26

同被引文献29

  • 1N. J. Thomas, D. G. M. Cruickshank and D.I. Lauren- son, Calculation of mobile location using scatter informa- tion [ J ]. Electronics Letters, 2001, V. 37 ( 19 ) : 1193- 1194.
  • 2Kegen Yu, and Y. Jay Guo, Statistical NLOS identifica- tion based on AOA, TOA, and signal strength[J] , IEEE Transactions on Vehicular Technology, 2009, V. 58 ( 1 ) : 274-286.
  • 3Lin Liu, Ping Deng, Pingzhi Fan. A TOA reconstruction method based on ring of scatterers model [ C ]. Applica- tions and Technologies, Proceedings of the Fourth Interna- tional Conference, 27-29 Aug. 2003:357-377.
  • 4S. Al-Jazzar, J. Caffery. ML and Bayesian TOA location estimators for NLOS environment[C]. Vehicular Technol-ogy Conference, Proceedings, 2002 : 1178- 1181.
  • 5陈璋鑫,陈显宁,窦衡.基于角扩展信息的非直达波混合定位方法[C].第九届全国雷达学术年会,烟台,2004,8:783-785.
  • 6S. A1-Jazzar, J. Caffery. Scattering-Model-Based Methods for TOA Location in NLOS Environments [ J ]. 2007, V. 56(4) :583-593.
  • 7Fishier E, Haimovich A, Blum R,et al. MIMO radar:an idea whose time has come[C]. Proceedings of the IEEE radar conference. Newark:lEEE. 2004:71-78.
  • 8M. L. Bencheikh, Y. Wang. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar [J]. Electronics letters, 2010,46(15), 1081-1083.
  • 9Ruiyan Du, Jinkuan Wang, Fulai Liu. Space-time matrix method for joint angle and frequency estimation[J].lEEE international conference on communication technology, 2008,10(12): 458-461.
  • 10Salman A, Ahmad I, A1-Madani S. Particle swarm opti- mization for task assignment problem [ J ]. Microproces- sors and Microsystems, 2002, 26(8) : 363-371.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部