期刊文献+

衰落信道下基于支持向量机的调制识别方法 被引量:7

Modulation Recognition Based on SVM In Fading Channels
下载PDF
导出
摘要 本文以四阶累积量为特征参数,采用支持向量机(SVM)将分类特征值映射到高维空间中,并构建最优分类超平面,实现对QPSK、16QAM、64QAM和OFDM四种信号的自动调制识别。分析了AWGN信道、Rayleigh衰落信道和Na-kagami衰落信道对四阶累积量的影响,推导并给出了经过衰落信道后四阶累积量的表达式。基于支持向量机的调制识别方法解决了特征样本在低维空间的不可分问题,仿真结果表明,在SNR低于10dB时,该方法的性能明显优于决策树方法,信噪比大于等于0dB时,各种信号的调制识别率在90%以上。 In this paper the method of recognizing signals modulated by QPSK, 16QAM, 64QAM and OFDM is presented based on the support vector machine(SVM) algorithm with the characteristic parameter of forth order cumulants. SVM maps the feature values of classification into high dimension space, in which the optimal separating hyperplane is eonstructsed to realize the separation of the signals with targeted modulation method. The influence of AWGN channel, Rayleigh and Nakagami fading channels on the characteristic parameter is analyzed respectively, and the explicit expression of the characteristic parameter is further derived. The recognition method based on SVM can resolve the non-separable problem in low dimension space. The simulation results show that the performance of the SVM-based method is much better than that of the decision tree method when SNR is lower than 10dB. With SNR larger than 0db, the successful recognition rates of the four types of signals are all above 90%.
作者 龚晓洁 朱琦
出处 《信号处理》 CSCD 北大核心 2010年第8期1234-1239,共6页 Journal of Signal Processing
基金 国家自然科学基金(60772062) 国家重点基础研究发展计划资助(2007CB310607) 国家科技重大专项(2009ZX03003-002) 东南大学移动通信国家重点实验室开放研究基金资助课题(N200813)
关键词 调制识别 特征提取 高阶累积量 支持向量机 modulation recognition feature extraction high order cumulants support vector machines ( SVM )
  • 相关文献

参考文献9

  • 1E.E. Azzouz, AK. Nandi. Automatic identification of digital modulation types [ J]. Signal Processing, 1995, 47 ( 1 ) :55-69.
  • 2P. Prakasam, M. Madheswaran. Digital modulation identification model using wavelet transform and statistical parameters [ J ]. Journal of Computer Systems, Networks, and Communications, january 2008 : 1 - 8.
  • 3M. L. D. Wong, A. K. Nandi. Automatic digital modulation recognition using artificial neural network and genetic algorithm [ J ]. Signal Processing, 2004, 84 ( 2 ) : 351-365.
  • 4Negar Ahmadi, Reza Berangi. Modulation classification of QAM and PSK from their constellation using genetic algorithm and hierarchical clustering [ C ]. Information and Communication Technoloqies: From theory to applications, April 2008 : 1-5.
  • 5Cheol-Sun Park, Jun-Ho Choi, Sun-Phil Nab, Won Jang, Dae Young Kim. Automatic modulation recognition of digital signals using wavelet features and SVM [ C ]. Advanced Communication Technology, Feb. 2008, 1 : 387- 390.
  • 6David Boute, Balu Santhanam. A feature weighted hybrid ICA-SVM approach to automatic modulation :recognition [ C]. DSP/SPE, Jan. 2009:399-403.
  • 7Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Yang Shaoquan Chen Weidong (School of Electronic Engineering, Xidian University, Xi’an 710071).CLASSIFICATION OF MPSK SIGNALS USING CUMULANT INVARIANTS[J].Journal of Electronics(China),2002,19(1):99-103. 被引量:20
  • 9Norman C. Beaulieu, Christine Cheng. Efficient Nakagami-m fading channel simulation [ J ]. IEEE transaction on vehicular technology ,2005,54 ( 2 ) :413-424.

共引文献192

同被引文献80

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部