期刊文献+

一种基于混合核函数的SOM网络流量分类方法 被引量:1

A Network Traffic Classification Method Based on the MIX-Kernel Self-Organizing Maps
下载PDF
导出
摘要 由于传统的自组织映射SOM方法对高维、非线性的网络流量数据的分类性能效果不佳,本文引入核方法,提出一种基于混合核函数的SOM(MIX-KSOM)网络流量分类方法。该方法结合了全局性和局部性核函数的优点,采用径向基函数和多项式函数线性组合构成的混合核函数代替内积作为距离度量,使输入空间中复杂的流量样本在特征空间得以简化。实验结果表明,采用MIX-KSOM方法能较好地对网络流量进行分类,较传统的SOM、采用单一核函数的SOM(KSOM)分类方法性能更好,分类准确率也高于NB方法。 Due to the worse classification performance of classical SelfOrganizing Maps (SOM) for network traffic,a network traffic classification method based on the MIXKernel SelfOrganizing Maps(MIXKSOM) is proposed. Applying a mixed kernel function that is the linear combination of the radial basis function and the polynomial function to replace the Euclidean distance as distance measure, this method can not only combine the advantages of global and local kernel functions, but also simplify the complicated flow sample from the input space to the feature space. The experimental results show that this method has a better performance for classifying network traffic than the classification method based on the traditional SOM and the single kernel function SOM(KSOM), and get a better accuracy rate than NB.
作者 陶晓玲 胡婷
出处 《计算机工程与科学》 CSCD 北大核心 2010年第10期23-25,130,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60872022)
关键词 流量分类 自组织映射网络 核函数 traffic classification selforganizing maps network kernel function
  • 相关文献

参考文献9

  • 1Kohonen T. The Self-Organizing Maps[J]. Proceedings of the IEEE, 1990,78(9) : 1464-1480.
  • 2Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods-Support Vector Learning I-M]. Cambridge: The MITPress, 1999.
  • 3陈俊,彭雅琴,宫宁生.基于遗传算法的核函数可调SOM方法[J].计算机工程与设计,2009,30(1):188-190. 被引量:1
  • 4Moore A W, Zuev D. Internet Traffic Classification Using Bayesian Analysis Techniques[C]//Proc of the 2005 ACM SIGMETRICS Int'l Conf on Measurement and Modeling of Computer Systems, 2005:50-60.
  • 5Moore A W. Internet Traffic Classification Using Bayesian Analysis Techniques[ EB/OL]. [ 2009-11-9 ]. http://www. cl. cam. ac. uk/research/srg/netos/nprobe/data/papers/sigmetrics/index, html.
  • 6Yu Lei, Liu Huan. Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution[C] // Proc of the 20th Int'l Conf on Machine Learning, 2003.
  • 7Moore A W, Zuev D, Crogan M. Discriminators for Use in Flow-Based Classification E R]. RR-05-13, London: Queen Mary University of London, 2005.
  • 8Kiviluoto K. Topology Preservation in Self-Organizing Maps [C]//Proc of Int'l Conf on Neural Networks, 1996: 294- 299.
  • 9Zuev D, Moore A W. Traffic Classification Using a Statistical Approach[C]//Proc of the PAM 2005,2005 : 321-324.

二级参考文献8

  • 1杨占华,杨燕.SOM神经网络算法的研究与进展[J].计算机工程,2006,32(16):201-202. 被引量:78
  • 2王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 3韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2004.
  • 4Peter Andras. Kemel-kohonen networks[J].International Journal of Neural Systems, 2002,12(2): 117-135.
  • 5Cristianini N, Shawe-Taylor J.Kemel methods for pattern recognition[M].Cambridge: Cambridge University Press,2004.
  • 6Kohonen T. Self organizing maps[M].Berlin:Springer,1995.
  • 7张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992.43-60.
  • 8潘志松,陈松灿,张道强.原空间中的核SOM分类器[J].电子学报,2004,32(2):227-231. 被引量:13

同被引文献19

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部