期刊文献+

一种改进的非负稀疏编码图像编码方案 被引量:2

An Improved Image Coding Scheme for Non-Negative Sparse Coding
下载PDF
导出
摘要 稀疏编码就是对人类等哺乳动物视觉系统主视皮层强大图像编码能力的成功模拟,具有自适应性,且得到的图像基具有空间的局部性、方向性和频域的带通性。在稀疏编码基础上发展而来的非负稀疏编码,克服了特征间的相互抵消现象,编码性能更为优越。而利用经验模态分解技术加入图像结构信息的非负稀疏编码方法,在兼顾非负稀疏编码特性的基础上能更好地体现图像的结构性特征。本文提出了基于图像基的图像压缩方法,把这种改进的非负稀疏编码算法用于图像压缩,在保证较好图像解码质量的情况下,获得了理想的压缩比。 In the long process of human evolution and development,every day,the human visual system deals with a lot of visual information. For its own survival and development,the human beings have to evolve a powerful imageprocessing capability,such as image coding of the visual system,etc. Sparse coding successfully simulats the strong ability of image coding of the primary visual cortex in mammals’ visual systems such as human,which features selfadaptability,and the learned image base are localized,oriented in space domain and bandpass in the frequency domain. Nonnegative sparse coding developes and evolves on the basis of sparse coding,to overcome the interoffset phenomena of characteristics,and the coding performance is more superior. And the nonnegative sparse coding,which joins the image structure information using the experience modality decomposition technology,reflects the structural characteristics of the image better in addition to ensuring the characteristics of nonnegative sparse coding. An image coding approach based on the image base is presented in this paper,and the improved nonnegative sparse coding algorithm is used in image compression,and an ideal compression ratio in ensuring a better quality of the decoded images is achieved.
作者 晁永国
机构地区 西京学院
出处 《计算机工程与科学》 CSCD 北大核心 2010年第10期66-68,79,共4页 Computer Engineering & Science
关键词 图像基 非负矩阵分解 非负稀疏编码 经验模态分解 image base nonnegative matrix factorization nonnegative sparse coding experience modality decomposition
  • 相关文献

参考文献7

  • 1H B Barlow. The Coding of Sensory Messages[M]// Thorpe W H, Zangwill O L, eds. Current Problems in Animal Behaviors. Cambridge University Press, 1961:331-360.
  • 2Olshausen B A ,Field D J. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images [J]. Nature, 1996,381 :607-609.
  • 3Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum[J]. Annual Review of Fluid Mechanics, 1999,31 : 417-457.
  • 4Lee D D, Seung H S. Algorithms for Non-Negative Matrix Factorization[C]//Proc of NIPS'01,2001 : 556-562.
  • 5Hoyer P O. Non-Negative Sparse Coding[C]//Proc of the IEEE Workshop on Neural Networks for Signal Processing, 2002: 557-565.
  • 6Hoyer P O. Modeling Receptive Fields with Non-Negative Sparse Coding[M]///Schutter E D, ecl. Computational Neroscience: Trends in Research 2003. Amsterdam: Elsevier, 2003.
  • 7Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum of Nonlinear and No-Stationary Time Series Analysis [J]. Proceedings of the Royal Society of London A, 1998,454(1971):903-995.

同被引文献34

  • 1VINJE W E, GALLANT J L. Sparse coding and decorrelation in primary visual cortex during natural vi- sion[J]. Science, 2000, 287(18):1273~1276.
  • 2OLSHAUSER B A, FIELD D J. Emergence of simple- cell receptive field properties by learning a sparse code for natural images[ J]. Nature, 1996, 381:607-609.
  • 3HOYER P O. Modeling receptive fields with non-nega- tive sparse coding [ J ]. Neuroscience, 2003,52 - 54 (1) :547 -552.
  • 4SHANG Li,CAO Feng-wen. Adaptive denoising using a modified sparse coding shrinkage method[ J]. Neural Processing Letters, 2006,24(2) : 153 -162.
  • 5HOYER P O. Non-negative sparse coding[ C ]//Pro- ceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing. Martigny, Switzer- land, 2002 : 557 - 565.
  • 6HOYER P, HYRARIEN A. A Muhi-layer sparse cod- ing network learns contour coding from natural images[J]. Vision Research, 2002, 42(12): 1593-1605.
  • 7LI Q Y, SHI J, SHI Z Z. A model of attention-guided visual sparse coding[ C ] //Proceedings of IEEE Inter- national Conference on Cognitive Informatics, 2005: 120 - 125.
  • 8LI Q Y, CHENG D, SHI Z Z. Task-oriented sparse coding model for pattern classification [ J ]. Lecture Notes in Computer Science, 2005, 36 (10): 903 -914.
  • 9ZHENG Miao, BU Jia-jun, CHEN Chun, et al. Graph regularized sparse coding for image representation [ J ]. IEEE Transactions on Image Processing, 2011, 20 (5) : 1327 -1336.
  • 10OLSHAUSEN B A, SALLEE P, LEWICKI M S. Learning sparse image codes using a wavelet pyramid architecture[ J]. Advances in Neural Information Pro- cessing Systems, 2001, 13 : 887 - 893.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部