期刊文献+

基于改进EST的人脸性别分类方法

Face Gender Classification Method Based on Improved Eigenspace Separation Transform
下载PDF
导出
摘要 提出一种基于改进的特征空间分离变换和支持向量机的人脸性别分类方法。在FERET人脸库和淮阴师范学院学生人脸库上进行实验,比较不同的特征提取方法和分类方法处理人脸性别分类问题的性能,结果表明,采用新方法在最优投影轴数和正确识别率方面均取得较好的结果,在2种人脸库上的正确识别率优于主成分分析方法和线性鉴别分析方法。 This paper proposes a face gender classification method based on improved Eigenspace Separation Transform(EST) and SVM. Classification experiments are conducted on FERET database and student human face database of Huaiyin Teachers College to compare different feature extraction methods and classification methods of the human face on the issue of gender classification. The results show that the performance of the new method is satisfied, and it is superior to Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA).
出处 《计算机工程》 CAS CSCD 北大核心 2010年第18期223-225,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60572034 90820002) 教育部新世纪优秀人才计划基金资助项目(NCET-06-0487) 江苏省自然科学基金资助项目(BK2006081) 江南大学创新团队计划基金资助项目(JNIRT0702)
关键词 主成分分析 线性鉴别分析 特征空间分离变换 支持向量机 Principal Component Analysis(PCA) Linear Discriminant Analysis(LDA) Eigenspace Separation Transform(EST) SVM
  • 相关文献

参考文献8

  • 1Edelman B,Valentin D,Abdi H.Sex Classification of Face Areas:How Well Can a Linear Neural Network Predict Human Performance[J].Journal of Biological System,1998,6(3):241-264.
  • 2Moghaddam B,Yang M H.Gender Classification with Support Vector Machine[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):707-711.
  • 3武勃,艾海舟,肖习攀,徐光祐.人脸的性别分类[J].计算机研究与发展,2003,40(11):1546-1553. 被引量:16
  • 4谢金融,卜佳俊.性别分类中头发特征提取方法的研究[J].计算机工程,2010,36(7):179-181. 被引量:2
  • 5Duda R,Hart R.Pattern Classification and Scene Analysis[M].New York,USA:Wiley,1973.
  • 6Torrieri D.A Linear Transform That Simplifies and Improves Neural Network Classifiers[C] //Proceedings of IEEE International Conference.on Neural Networks.Washington D.C.,USA:[s.n.] ,1996:1738-1743.
  • 7Vapnik V N.The Nature of Statistical Learning Theory[M].[S.l.] :Springer,1995.
  • 8Pelckmans J A K,Suykens T V,de Brabanter J,et al.LS-SVMlab[Z].[2009-08-11].http://www.esat.kuleuven.ac.be/sista/lssvmlab.

二级参考文献19

  • 1Xia Bin, Sun He, Lu Baoliang. Multi-view Gender Classification Using Gabor Binary Patterns and Support Vector Machines[C]//Proc. of IEEE International Joint Conf. on Neural Networks. Hong Kong, China: [s. n.], 2008.
  • 2Wright D B, Sladden B. An Own Gender Bias and the Importance of Hair in Face Recognition[J]. Acta Psychological, 2003, 114(1): 101-114.
  • 3Yacoob Y, Davis L. Detection, Analysis and Matching of Hair[C]//Proc. of ICCV'05. Beijing, China: [s. n.], 2005.
  • 4Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines, Software[Z]. (2009-01-01). http://www.csie.ntu.edu.tw/ -cjlin/libsvm.
  • 5Russell R. Sex, Beauty, and the Relative Luminance of Facial Features[J]. Perception, 2003, 32(9): 1093-1107.
  • 6B A Golomb, D T Lawrence, TJ Sejnowski. SEXNET: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems. San Mateo, CA, USA: Morgan Kaufrnann, 1991. 572-577.
  • 7G W Cottrell, J Metcalfe. EMPATH: Face, emotion, and gender recognition using holons. In: Advances in Neural Information Processing Systems. "San Mateo, CA, USA: Morgan Kanfmann,1991. 564-571.
  • 8B Edelman, D Valentin, H Abdi. Sex classification of face areas:How well can a linear neural network predict human performance.Journal of Biological System, 1998, 6(3) : 241 -264.
  • 9Alice J O'Toole et al. The perception of face gender: The role of stimulus structure in recognition and classification. Memory and Cognition, 1997, 26(1): 146-160.
  • 10Alice J O'Toole et al. The role of shape and texture information in sex classification. Max Planck Institute for Biological Cybernetics, Tubingen, Germany, Tech Rep: 23, 1995.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部