摘要
本文基于人工神经网络(BP) 方法,用毛细管色谱法预测汽油馏分的辛烷值,其预测最大绝对误差为0.28 ,平均误差为0.122,比常用的线性回归数学模型法更能准确地预报辛烷值。
Based on the Artificial Neural Network Approach method, the octane number of gasoline was predicted by using capillary chromatography. The maximum absolute error of prediction is 0.28, and the average error of prediction is 0.122 . The results show that the ANN approach method can predict the octane number of gasoline more accuracy compared with the common linear regression method.
出处
《石油与天然气化工》
CAS
CSCD
北大核心
1999年第2期103-105,共3页
Chemical engineering of oil & gas