期刊文献+

基于广义S变换的叠前去噪方法

Prestack noise attenuation Based on Generalized S transformation
下载PDF
导出
摘要 地震资料叠前去噪是勘探地震资料处理的关键问题之一,但这个问题长期以来一直没有得到很好的解决,各种不同类型的噪音是提高地震资料分辨率的一个主要障碍。如何消除地震资料中的各种不同类型的噪音是地震资料叠前去噪的核心问题。为此,人们进行了长期不懈的努力,以更好地消除各种噪音。文章着重概述应用广义S变换在叠前去噪的方法、以及应用的效果。结果表明,叠前去噪技术能有效压制噪声、提高信噪比,且振幅保真度较高,极大地改善了叠前地震资料的品质,为叠前地震反演的开展奠定了基础。 Seismic data pre-stack noise attenuation is one of the key problems of seismic data processing.However,this problem has not been well solved so far and is becoming a barrier of enhancing theresolution of seismic data.How to efficiently eliminate seismic data in different types of noise is a major problem of seismic data pre-stack noise attenuation.So far,many efforts have been made for the purpose of better attenuating noise.This paper summarizes the application of generalized S transformation in pre-stack de-noising and the effects.The results shows that pre-stack noise attenuation technique can effectively suppress noise,improve signal to noise ratio,and increase fidelity amplitude,which greatly improves the quality of pre-stack seismic data,and lay the foundation of carrying out pre-stack seismic inversion.
出处 《石油仪器》 2010年第4期59-61,102,共3页 Petroleum Instruments
关键词 广义S变换 振幅保真 叠前去噪 Generalized S transformation amplitude fidelity pre-stack noise attenuation
  • 相关文献

参考文献4

二级参考文献12

  • 1高静怀,满蔚仕,陈树民.广义S变换域有色噪声与信号识别方法[J].地球物理学报,2004,47(5):869-875. 被引量:66
  • 2Stockwell, R.G., Mansinha, L., Lowe, R. P., Localization of the complex spectrum: the transform, IEEE Tran. On Signal Processing, pp. 998 - 1001,1996.
  • 3Farge, M.. Wavelet transforms and their applications to turbulence, Ann, Rev. Fluid Mech., 24.
  • 4[1]Stockwell R G, mansinha L, lowe R P. Localization of the complex spectrum: the S transform. IEEE Trans. on Signal Processing,1996,17:998 ~ 1001
  • 5[3]C Robert Pinnegar, Lalu Mansinha. The S-transform with windows of arbitrary and varying shape.Geophysics, 2003,68( 1 ): 381 ~ 385
  • 6[5]Ta-Hsin Li, Hee-Seok Oh. Wavelet spectrum and its characterization property for random process. IEEE trans. on information theory,2002,48( 11 ): 2922 ~ 2937
  • 7[6]Lunji Qiu, Meng Hwa Er. Wavlet spectrogram of noisy signals. INT.J. Electronics, 1995,79(5) :665 ~ 677
  • 8[7]S Mallat. A Wavelet Tour of Signal Processing. New York: Academic Press, 1998
  • 9[8]Christopher T, Gilbert P Compo. A practical guide to wavelet analysis. Bulletin of the America Meteorological Society, 1998,79( 1):61 ~78
  • 10[9]Gilman D L, F J Fuglister , J M Mitchell Jr . On the power spectrum of red noise. J. Atoms. Sci., 1963, 20:182 ~ 184

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部