期刊文献+

基于语义角色标注的新闻领域复述句识别方法 被引量:5

An Approach to News Paraphrase Recognition Based on SRL
下载PDF
导出
摘要 复述(Paraphrase)句的识别可看作文本蕴含(Text Entailment)识别的一个子问题,传统的解决方法是通过词频或句法上的相似度来判断。即使用相同的文字书写的句子其含义也可能差别很大,而相同句法结构也不能保证意义一致。该文根据新闻语料的特点,提出了一种通过引入深层的语义角色标注来帮助识别新闻领域复述句的方法。该方法通过在语义角色这种结构化的含义表达形式中提取的特征来弥补传统方法的不足:先识别待判断的两个句子中所有谓词的语义角色,然后计算两个句子间对应语义角色的相似度,最后结合传统的句子相似度计算方法来进行相似性计算。实验证明,该文提出的方法能有效地提高复述语句的识别效果。 Paraphrase Recognition can be regarded as a sub-problem of Text Entailment Recognition. This problem is difficult in that simply using term frequency or syntax information is prone to error judgment because even the same pack of words can cook up sentences with totally different meanings and similar parsing trees can either have differ- ent meanings. In this paper we present a new approach based on Semantic Role Labeling (SRL) to identify para- phrase. In our approach, we first label sentences with semantic role, and then get features partly representing the meaning of the sentence. By doing so, we also take the specialty of News sentences under consideration. Our experiment proves the effectiveness of our approach.
出处 《中文信息学报》 CSCD 北大核心 2010年第5期3-9,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60975053)
关键词 复述识别 语义角色标注 自然语言处理 natural language processing semantic role labeling paraphrase recognition
  • 相关文献

参考文献21

  • 1McKeown, K. Paraphrasing using given and new information in a question-answer system[C]//Association for Computational Linguistics. 1979.
  • 2Callison-Burch, C., P. Koehn, and M. Osborne. Improved statistical machine translation using paraphra- ses [C]//Association for Computational Linguistics Morristown, NJ, USA.. 2006.
  • 3宗成庆 张玉洁 山本和英.面向口语翻译的汉语语句改写方法.Journal of Chinese Language and Computing,2006,12(1):63-77.
  • 4Zong, C. , et al. , Approach to Spoken Chinese Paraphrasing Based on Feature Extraction [C]//Proceedings of the 6th Natural Language Processing Pacific Rim Symposium (NLPRS). Tokyo, Japan. 2001: 551-556.
  • 5车万翔,刘挺,秦兵,李生.基于改进编辑距离的中文相似句子检索[J].高技术通讯,2004,14(7):15-19. 被引量:64
  • 6Harabagiu, S. and A. Hickl. Methods for using textual entailment in open-domain question answering [C]//Association for Computational Linguistics Morristown, NJ, USA. 2006.
  • 7Barzilay, R. , K. McKeown, and M. Elhadad. Information fusion in the context of multi-document summa- rization [C]//1999: Association for Computational Linguisties Morristown, NJ, USA.
  • 8秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 9Qiu,L., M. Kan, and T. Chua. Paraphrase recognition via dissimilarity significance classification [C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Proeessing. 2006.
  • 10Corley, C. and R. Mihalcea, Measuring the semantic similarity of texts[C]//Ann Arbor, 2005.

二级参考文献32

  • 1穗志方 俞士汶.基于骨架依存树的语句相似度计算模型[A]..中文信息处理国际会议论文集(ICCIP''98)[C].北京:清华大学出版社,1998.458-465.
  • 2董振东 董强.知网[EB/OL].http:∥www.keenage.com.,.
  • 3Nirenburg S.Two approaches of matching in example-based machine translation.In:Proc TMI-93.Kyoto,Japan,1993
  • 4Li S,Zhang J,et al.Journal of Computer Science and Technology,2002,17(6):933
  • 5Ristad E S,Yianilos P N.IEEE PAMI,1998,20(5):522
  • 6Chatterjee N.A Statistical approach for similarity measurement between sentences for EBMT.1999
  • 7Frakes W,Baeza-Yates R.Information retrieval:data structures and algorithms.Englewood Cliffs,N J:Prentice Hall,1992
  • 8Over, P and J. Yen. 2003. An Introduction to DUC 2003 - Intrinstic Evaluation of Generic News Text Summatization Systems. http :/www. nlpir, nist. gov/projeets/due/pubs/2003 slides/due2003 intro, pdf.
  • 9Saggion H., D. Radev, S. Teufel, and W. Lmn. 2002. Meta-Evaluation of Summarization in a cross-Lingual Environment Using-Based Metrics. In: Proceedings of COLING - 2002, Taipei.
  • 10Michael White, Tanya Korelsky, Claire Cardie, Vincent Ng, David Pierce and Kiri Wagstaff. Multidocument Summarizatien via Information Extraction[A]. In: Proceedings of the First International Conference on Human Language Technology Research[ C ]. 1998 : 36 - 44.

共引文献115

同被引文献69

  • 1秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 2吕德新,张桂平,蔡东风,朱江涛.基于SVM的疑问句问点语义角色标注[J].沈阳航空工业学院学报,2006,23(1):44-46. 被引量:4
  • 3刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39
  • 4刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 5Shen D, Lapata M. Using semantic roles to improve question answering[C]//Annie Zaenen, Antal van den Bosch. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Edmonton: Association for Computational Linguistics, 2007 : 12-21.
  • 6Mihai S, Sanda H,John W. Using predicate--argument structures for information extraction[C]// Erhard W Hinrichs, Dan Roth. Proceedings of the Annual Meeting on Association for Computational Lingustics. Sapporo.- Association for Computational Linguistics, 2003 :8-15.
  • 7Bilotti M W, Ogilvie P, Callan J, et al. Structured retrieval for question answering[C]//Kraaij W, de Vries AP, Clarke CLA, eds. Proceedings of the 30th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM,2007 ,351-358.
  • 8Braz R,Girju R,Punyakanok V,Roth D,etal. An inference mod- el for semantic entailment in natural language[C]// Cristiano Castelfranchi. National Conference on Artificial Intelligence. Virginia: AAAI, 2005:1 678-1 679.
  • 9Jinho D C, Matha P. Transition-based semantic role labeling using predicate argument clustering[C]// Matsumoto, Yuji Mihalcea, Rada. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland: Association for Computational Linguistics,2011:37-45.
  • 10Baker C F, Fillmore C J, Lowe J B. The berkeley frameNet project[C]// Salimer M. Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics. Montreal : Association for Computational Linguistics. 1998 : 86-90.

引证文献5

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部