期刊文献+

细菌纤维素/透明质酸复合材料的生物合成及表征 被引量:5

Biosynthesis and Characterization of Bacterial Cellulose/Hyaluronic Acid Composites
下载PDF
导出
摘要 在培育细菌纤维素(BC)过程中添加不同分子量的两种透明质酸(HA),分别制备出不同的细菌纤维素复合物HA/BC(Mw=3,000)和HA/BC(Mw=300,000)。采用红外光谱、扫描电子显微镜、X射线衍射和热重分析对其结构和性能进行了表征。添加HA后提高了复合物的产量;FTIR结果表明了HA与BC之间存在交联;添加HA增大了BC的热稳定性,而对BC的结晶指数影响不大,且HA/BC(3,000)的性能始终优于HA/BC(300,000);HA(3,000)增大了BC的拉伸强度,而HA(300,000)反而减小了其拉伸强度。结果表明添加小分子量的HA可制备最大热失重温度较高的HA/BC复合物。 Bacterial cellulose/hyaluronic acid composites(HA/BC) were obtained by adding HA(Mw=3,000) and HA(Mw=300,000) into the Acetobacter xylinum culture system.The structure and properties of the composites were determined by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scaning electron microscopy(SEM) and thermogravimetric analysis(TGA).The added HA could increase the productivity.And the FTIR spectra indicated the intermolecular interaction between BC and HA.The added HAs could increase the thermal stability of BC,but showed no significant influence on the crystallinity index(CI),and HA/BC(3,000) had always-superior properties.The tensile strength of BC was increased by the addition of HA(3,000) but decreased by HA(300,000).The results show that HA/BC have the increased max weight loss temperature with addition of HA of low-molecular-weight in the culture medium.
出处 《纤维素科学与技术》 CAS CSCD 2010年第3期1-6,共6页 Journal of Cellulose Science and Technology
基金 国家自然科学基金项目(50763002 50863002) 海南省自然科学基金项目(80605 20803) 海南大学科研项目(hd09xm29 hd09xm72 hd09xm30)
关键词 细菌纤维素 生物合成 复合材料 透明质酸 木醋杆菌 bacterial cellulose biosynthesis composites hyaluronic acid Acetobacter xylinum
  • 相关文献

参考文献13

  • 1lguchi M, Yamanaka S, Budhiono A. Bacterial cellulose-a masterpiece of nature's arts[J]. Journal of Materials Science, 2000, 35(2): 261-270.
  • 2Dieter Klemm, Dieter Schumann, Ulrike Udhardt, et al. Bacterial synthesized cellulose-artificial blood vessels for microsurgery[J]. Prog Polym Sci, 2001, 26: 1561-1603.
  • 3Wojciech Czaja, Alina Krystynowicz, Stanislaw Bielecki, et al. Microbial cellulose-the natural power to heal wounds[J]. Biomaterials, 2006, 27: 145-151.
  • 4Czaja W K, Young D J, Brown R M Jr, et al. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules, 2007, 8(1): 1-12.
  • 5Phisalaphong M, Jatupaiboon N. Biosynthesis and characterization of bacteria cellulose-chitosan film[J]. Carbohydrate Polymers, 2008, 74(3): 482-488.
  • 6Wan Y Z, Hong L, Jia S R, et al. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites[J]. Composites Science and Technology, 2006, 66(11-12): 1825-1832.
  • 7Grande C J, Tortes F G, Gomez C M, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications[J]. Acta Biomaterialia, 2009, 5: 1605-1615.
  • 8Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydrate Polymers, 2008, 72(1): 43-51.
  • 9Luo H, Xiong G; Huang Y, et al. Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds[J]. Materials Chemistry & Physics, 2008, 110(2-3): 193-196.
  • 10Jeanie L Drury, David J Mooney. Hydrogels for tissue engineering: scaffold design variables and applications[J]. Biomaterials, 2003, 24: 4337-4351.

同被引文献82

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部