期刊文献+

基于用户浏览行为的用户兴趣模型的表示及更新 被引量:2

Representation and Update for User Interest Model Based on User Browsing Behaviors
下载PDF
导出
摘要 在分析用户浏览行为获取用户兴趣的基础上,提出一种树状结构模型与向量空间模型相结合来表示用户兴趣模型的方法,基于此用户兴趣模型,把遗忘机制引入模型的更新。这种兴趣模型不但具有加权矢量模型的加权关键词的特点和层次模型的层次性,并且还结合向量空间模型的特点,将用户的兴趣与浏览页面的特征向量结合起来。实验证明,建立用户兴趣模型的方法是合理和有效的。 Based on analysis of user browsing behaviors to extracting user interests,a method of user model representation of tree struc-ture model combined with vector space model.Based on this representation of user model,a forgotten mechanism is intro-duced to update of this model.This model not only has characteristics of weighing vector model and keywords,and hierarchy of the hierarchical model,but also combines with characteristics of vector space model to make user interests and eigenvector of browsing pages consistent.Experiments results prove that the researching method of building user interest model is reason-able and effective.
出处 《常州信息职业技术学院学报》 2010年第4期28-30,34,共4页 Journal of Changzhou College of Information Technology
关键词 树状结构模型 向量空间模型 遗忘机制 tree structure model vector space model forgotten mechanism
  • 相关文献

参考文献3

二级参考文献13

  • 1[1]E Voorhees, D Harrman. Overview of the eighth text retrieval conference. In: Proc of the 8th Text Retrieval Conf. Gaithersburg, Margland: NIST Press, 2000. 1~23
  • 2[2]T Kindo. A adaptive personal information filtering system that organizes personal profiles automatically. In: Proc of the 15th Int'l Joint Conf on Artificial Intelligence, IJCAI'97. NAGOYA, Aichi, Japan, 1997. 716~721
  • 3[3]J A Konstan. GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM, 1997, 40(3): 77~87
  • 4[4]D Oard D, G Marchionini. A conceptual framework for text filtering. 1997. http://www.cs.umd.edu/TRs/authors/Gary〖KG-*8〗Marchionini.html
  • 5[9]G Salton, J Allan, C Buckley. Approaches to passage retrieval in full text information systems. In: Proc of the 16th Annual Int'l SIGIR Conf. Pittsburgh, PA, 1993
  • 6M Claypool, P Le, M Waseda, et al. Implicit Interest Indicators[A]. Proc of the ACM Intelligent User Interfaces Conf(IUI)[C]. 2001.33-40.
  • 7B Mobasher, H Dai, T Luo, et al. Combiing Web Usage and Content Mining for More Effective Personalization[A]. Proc of the Int'l Conf on E_ Commerce and Web Technologies(ECWeb2000)[C]. 2000.
  • 8T P Liang, H J Lai. Discovering User Interests from Web Browsing Behavior: An Application to Internet News Services[A]. Proc of the 35th Hawaii Int'l Conf on System Sciences[C]. 2002.
  • 9Wu Y H, Chen Y C, Chen L P. Enabling Personalized Recommendation on the Web Based User Interests and Behaviors[A]. Proc of the 11th Intq Workshop on Research Issues in ata Engineering (RIDE'01)[C]. 2001.
  • 10赵静 但琦.数学建模与数学试验[M].北京:高等教育出版社,2000..

共引文献48

同被引文献52

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部