期刊文献+

弹塑性梁系统的动力学特性研究 被引量:2

INVESTIGATION ON DYNAMIC PERFORMANCE OF MULTI-BODY SYSTEM WITH ELASTO-PLASTIC BEAMS
下载PDF
导出
摘要 研究了弹塑性梁系统的动力学特性.从弹塑性梁的非线性本构关系出发,同时考虑几何非线性,用虚功原理建立单个梁的动力学变分方程,利用假设模态法离散.在此基础上引入运动学约束关系,建立了弹塑性梁系统的刚-柔耦合动力学方程.对重力作用下的柔性单摆和双摆数值仿真结果表明,塑性应变引起横向变形绝对值增大和横向振动振幅衰减,在角加速度突变时塑性效应最为显著. The dynamic performance of elasto-plastic beams system was investigated. Based on the nonlinear constitutive relation,the dynamics variational equations for an elasto-plastic beam was established using virtual work principle, in which the geometric nonlinear effect was also taken into account. The assumed mode method was used for discretization, and then the kinematic constraint equations were used to derive the dynamic equations for multi-body system. Simulations of single pendulum and double pendulum under gravity show the effect of plastic strain on dynamic characteristics of beams, leading to the increase of the absolute value of the average transverse deformation and the decrease of transverse vibration amplitude. Significant effect of plastic strain was revealed in case of sudden change of angular acceleration.
作者 石望 刘锦阳
出处 《动力学与控制学报》 2010年第3期197-201,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10472066 10772113)~~
关键词 弹塑性梁系统 非线性本构关系 动力学 elasto-plastic beams system nonlinear constitutive relation dynamics
  • 相关文献

参考文献7

  • 1Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control and Dynamics,1987,10(2):139-150.
  • 2Wu S C,Hang E.Geometric non-Linear substructuring for dynamics of flexible mechanical systems,International Journal for Numerical Methods in Engineering,1988,26:2211-2226.
  • 3Wallrapp O,Schwertassek R.Representation of geometric stiffening in muhibody system simulation,International Journal for Numerical Methods in Engineering,1991,32:1833-1850.
  • 4Liu J Y,Hong J Z.Geometric stiffening effect on rigid flexible coupling dynamics of an elastic beam.Journal of Sound and Vibration,2004,278(4):1147-1162.
  • 5Berzeri M,Shabana A A.Development of simple models for the elastic forces in absolute nodal Co-ordinate formulation.Journal of Sound and Vibration,2000,235(4):539-565.
  • 6Gerstmayr J,Holl H J,Irschik H.Development of plasticity and damage in vibrating structural elements performing guided rigid-body motions.Archive of Applied Mechanics,2001,71:135-145.
  • 7Gerstmayr J,Irschik H.Vibrations of the elasto-plastic pendulum.International Journal of Non-Linear Mechanics,2003,38:111-122.

同被引文献23

  • 1盛立伟,刘锦阳,余征跃.柔性多体系统弹性碰撞动力学建模[J].上海交通大学学报,2006,40(10):1790-1793. 被引量:9
  • 2蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:54
  • 3Gerstmayr J, Holl H J, Irschik H. Development of plastici- ty and damage in vibrating structural elements performing guided rigid-body motions. Archive of Applied Mechanics, 2001, 71:135 - 145.
  • 4Gerstmayr J, Irschik H. Vibrations of the elasto-plastic pendulum. International Journal of Non-Linear Mechanics, 2003, 38:111 - 122.
  • 5Vetyukov Y, Gerstmayr J, Irschik H. Plastic multipliers as driving variables of numerical simulation in elastoplasticity. Mechanics Research Communication, 2003, 30:421 -430.
  • 6Gerstmayr J. The absolute coordinate formulation with elas- to-plastic deformations. Multibody System Dynamics, 2004, 12:363 - 383.
  • 7Lv Jidong,Zhao De-an,Ji Wei,et al.Design and research on vision system of apple harvesting robot[C] //Hangzhou:Intelligent Human-Machine Systems and Cybernetics,2011:177-120.
  • 8Zarafshan P,Moosavian S A A.Manipulation control of a space robot with flexible solar panels[C] //Montreal:Advanced Intelligent Mechatronics,2010:1099-1104.
  • 9Hu Haidong,Li En,Zhao Xiaoguang.Modeling and simulation of folding-boom aerial platform vehicle based on the flexible multi-body dynamics[C] //Dalian:Intelligent Control and Information Processing,2010:798-802.
  • 10Yoo W S,Kim K N,Kim H W,et al.Developments of multibody system dynamics:computer simulations and experiments[J].Multibody System Dynamics,2007,18(1):35-58.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部