摘要
利用二元树复小波变换对人脸图像进行5尺度小波分解,并提取每一尺度下6个方向高频子图小波系数模的均值和标准方差组成60维的特征向量表征人脸,然后采用支持向量机的一对一分类算法对ORL人脸图像库进行分类实验,结果表明二元树复小波变换和支持向量机的集成方法能有效提高人脸图像的分类精度.
The dual - tree complex wavelets transform was used to decompose face images with 5 scales, then 60 - dimensional feature vector was generated by computing the mean and standard deviations from wavelet coefficients of six - direction high - frequency subbands of each scale, and the classification experiment was clone by using one vs one algorithm of the support vector machine based on ORL face image database. The tests results show that the method of integrating the dual - tree complex wavelets transform with the support vector machine can effectively improve the classification accuracy of face images.
出处
《云南民族大学学报(自然科学版)》
CAS
2010年第5期313-316,共4页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家杰出青年科学基金(50225414)
山东省高等学校科技计划项目(J09LG51)
关键词
人脸识别
二元树复小波变换
GABOR小波变换
支持向量机
特征提取
face recognition
dual - tree complex wavelets transform
Gabor Wavelet Transform
support vector machine
feature extraction