期刊文献+

基于Banach空间的中立型无穷时滞微分方程

Neutral Differential Equations with Infinite Delay in Banach Spaces
下载PDF
导出
摘要 利用Hausdorff非紧测度、分数幂算子和Darbo不动点理论,在半群失去紧性等较弱条件下,研究了基于Banach空间的一类中立型无穷时滞微分方程适度解的存在性,改进和推广了一些已知的结果. This paper studies neutral differential equations with infinite delay in Banaeh spaces. The existence of mild solutions to such equations is obtained by using the theory of Hausdorff measure of noncompactness, Fractional power operator and fixed point theorem, without the compactness assumption on associated semigroups, which can improve and generalize some previous results.
出处 《云南民族大学学报(自然科学版)》 CAS 2010年第5期337-340,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(10571150)
关键词 HAUSDORFF非紧测度 适度解 分数幂算子 中立型微分方程 时滞微分方程 Hausdorff measure of noncompactness mild solutions Fractional power operator neutral differential equations differential equation with delay
  • 相关文献

参考文献10

  • 1LEUNG A W,ZHOU Z.Global stability for large systems of volterra type integrodifferential population delay equations[J].Nonlinear Anal,1988,12(3):495-505.
  • 2DONG Qi-xiang,FAN Zhen-bin,LI Gang.Existence of solutions to nonlocal functional differential and integrodifferdntial equations[J].Int J of Nonlinear Sci,2008,5(2):140-151.
  • 3FAN Zhen-bin,DONG Qi-xiang,LI Gang.Semilinear differential equations with nonlocal conditions in Banach spaces[J].Int J Nonlinear Sci,2006,2(3):131-139.
  • 4张进,练婷婷,李刚.Banach空间中具有非局部条件的积分微分方程[J].扬州大学学报(自然科学版),2007,10(4):21-25. 被引量:11
  • 5刘萍,李永昆.带反馈控制的时滞微分系统的双正周期解(英文)[J].云南民族大学学报(自然科学版),2005,14(4):281-285. 被引量:1
  • 6PAZY A.Semigrops of linear operators and applications to partial equations[M].New york:Springer-Verlag,1980.
  • 7HALE J K,KATO J.Phase space for retarded equations with infinite delay[J].Funkcial Ekvac,1978,21:11-41.
  • 8HINO Y,MURAKAMI S,NAITO T.Functional differential equations with infinite delay[M].Berlin:Springer-Verlag,1991.
  • 9BANAS J,GOEBEL K.Measure of non-compactness in banach space[M].New York:Dekker,1980.
  • 10AGRAWAL R,MEEHAN M,O'REGAN D.Fixed point theory and applications[M].New York:Cambridge University Press,2001.

二级参考文献25

  • 1邓海荣,马兆丰.Banach空间中常微分方程解的存在唯一性定理的注[J].扬州大学学报(自然科学版),2007,10(1):1-3. 被引量:2
  • 2SAKER S H, AGARWAL S. Oscillation and global attractivity in a nonlinear delay periodic model of resiratory dynamics [ J ].Comput. Math. Appl, 2002,44(5-6):623-632.
  • 3SAKER S H, AGARWAL S. Oscillation and global attractivity in a periodic Nichlsons blowilies model[ J]. Math. Comput. Model, 2002,35(7 - 8) :719 -731.
  • 4JIANG Da-qing, WEI Jun-jie. Positive periodic solutions of functional differential equations and population models[ J ]. Electron.J. Differential Equations, 2002,71 : 1 - 13.
  • 5YAN J, FENG Q. Global attractivity and oscillation in a nonlinear delay equation[ J]. Nonlinear Anal, 2001,43:101 - 108.
  • 6LEFSCHETZ S. Stability of nonlinear control system[M]. New York: Academic Press, 1965.
  • 7KUANG Y. Delay differential equations with application in population dynamics[ M]. New York: Academic Press, 1993.
  • 8HUO H F, LI W T. Positive Solutions of a class of delay differential system with feedback control[ J]. Comput. Math. Appl,2004,148(1) :35 -46.
  • 9GAINS R E, MAWHIN J L. Coincidence degree and nonlinear differential equations[M]. Berlin: Springer, 1977.
  • 10GUO D, LAKSHMIKANTHAM V. Nonlinear Problem in Abstract Cones[M]. New York: Academic Press, 1988.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部