摘要
对基于饱和执行器的不确定线性系统的非脆弱控制进行了研究.根据Lyapunov二次稳定性原理,证明并给出了椭球为闭环系统吸引域的充分条件,然后将该条件转化为线性矩阵不等式的优化问题,并估计出了闭环系统的最大吸引域,最后得到基于最大吸引域的非脆弱控制器参数的设计方法.仿真结果表明,与不考虑非脆弱控制相比,非脆弱控制器能使系统状态更快地稳定在原点.
Non -fragile control based on the uncertainty linear system of saturation actuator is studied. According to Lyapunov quadratic stability theory, a sufficient condition of ellipsoid being the domain of attraction for the closed - loop system is proved and presented. Then the condition is converted to the optimal problem of linear matrix inequities and the maximum domain of attraction for the closed - loop system is estimated. Finally, the parameter design method of non - fragile controller based on the maximum domain of attraction is obtained. The simulation resuits show that the non -fragile controller can help the system maintain its original state.
出处
《云南民族大学学报(自然科学版)》
CAS
2010年第5期386-390,共5页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
无锡市广播电视大学校级课题基金
关键词
非脆弱控制
饱和执行器
不确定系统
线性矩阵不等式
non -fragile control
saturation actuator
uncertainty system
linear matrix inequities