期刊文献+

髁突手术对其压缩力学性能及骨密度的影响 被引量:4

Effects of various condylar operations on its compressive mechanical property and bone density
原文传递
导出
摘要 目的探讨不同术式后髁突力学性能的变化及其与材料特性之间的关系。方法采用压缩力学性能测试技术和双能X线吸收法,定量分析12侧正常、6侧髁突高位切削术及6侧关节重建术的成年杂种犬髁突的压缩力学性能和骨矿含量。结果髁突的载荷与位移呈非线性关系。其弹性极限负荷及位移、最大负荷及位移以正常组为最高,而刚度及骨矿含量则以切削组为最高,减径组各项指标均最低。3组髁突弹性极限负荷、最大负荷及刚度与骨密度之间均有显著或极显著意义的相关性,相关系数在0.862以上。结论不同术式造成的髁突形态改变直接影响其力学性能和骨矿含量。 Objective To investigate the changes and relationship of condylar mechanical properties and its material character after various condylar operations. Methods Condylar compressive mechanical properties and its bone mineral content were analyzed quantitatively by compressive mechanical property measurement technique and dual energy X-ray absorptiometry in 6 and 6 adult dogs undergone either high shaping or reconstruction of condyles respectively, and compared with 12 normals. Results Condylar elastic-limit load and displacement, its largest load and displacement were the highest in control, but stiffness and bone mineral content were the highest in highshaping group, all data were the lowest in the reconstruction ones. There was marked and extremely marked linear positive relativity among condylar elastic-limit load, largest load, stiffness and bone density, in which all relative coefficients exceeded 0.862. Conclusion The changes of condylar shape induced by various operations directly influence its compressive mechanical properties and bone mineral content. There is linear positive relativity between condylar compressive mechanical properties and its bone mineral density.
出处 《中华口腔医学杂志》 CAS CSCD 北大核心 1999年第3期145-147,共3页 Chinese Journal of Stomatology
关键词 下颌骨髁状突 骨密度 压缩力学性质 髁突手术 Mandibular condyleBone density Compressive mechanical property Dual energy X-ray absorptiometry HK
  • 相关文献

参考文献4

二级参考文献2

共引文献2

同被引文献35

  • 1龙春风.CATIAV5高级应用[M].北京:清华大学出版社,2006:265-291.
  • 2Nitzan DW. Intranrticular pressure in the functioning human temporomandibular jointand its alteration by uniform elevation of the cclusion plane[J]. Oral Maxillofac Surg, 1994,52(7) :671-680.
  • 3Hasler EM,Herzog W,Wu JZ,et al.Articular cartilage biomechanics:Theoretical models,material properties,and biosynthetic response.Crit Rev Biomed Eng,1999,27(6):415.
  • 4Nakai H,Niimi A,Ueda M.The influence of compressive loading on growth of cartilage of the mandibular condyle in vitro.Arch Oral Biol,1998,43(7):505.
  • 5Mao JJ,Rahemtulla F,Scott PG.Proteoglycan expression in the rat temporomandibular joint in response to unilateral bite raise.J Dent Res,1998,77(7):1520.
  • 6Kuboki T,Shinoda M,Orsini MG,et al.Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc.J Dent Res,1997,76(11):1760.
  • 7Jurvelin JS,Arokoski JPA,Hunziker EB,et al.Topographical variation of the elastic properties of articular cartilage in the canine knee.J Biomech,2000,33(6):669.
  • 8Habelitz S,Marshall SJ,Marshall GW,et al.Mechanical properties of human dental enamel on the nanometre scale.Arch Oral Biol,2001,46(2):173.
  • 9A-Hassan E,Heinz WF,Antonik MD,et al.Relative microelastic mapping of living cells by atomic force microscopy.Biophys J,1998,74(3):1564.
  • 10Mow VC,Ratcliffe A.Structure and function of articular cartilage and meniscus.In:Mow AC,Hayes WC.Basic orthopaedic biomechanics.Philadelphia:Lippincott-Raven,1997.145-148,156.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部