期刊文献+

梯图的点可区别全染色(n≡5(mod8))

Vertex-distinguishingtotal coloring of ladder graphs(n≡5(mod8))
下载PDF
导出
摘要 一个图的全染色被称为点可区别的即对任意两个不同点的相关联元素及其本身所构成的色集合不同。其中所用的最少颜色数称为G的点可区别全色数。本文定义了一种排序方法:三角排序。利用该排序的结果证明了当n≡5(mod8)和C4n-1/2+2<m≤C4n/2+2时,梯图Lm≌Pm×P2的点可区别全色数为n。 A proper total coloring of a simple graph G is called vertex distinguishing if for any two distinct vertices u and v in G, the set of colors assigned to the elements incident and itself to u differs from the set of colors incident to v. The minimal number of colors required for a vertex distinguishing total coloring of G is called the vertex distingguishing total coloring chromatic number. In this paper, we give a "triangle compositor", by the compositor, we proved that when n≡5(mod8) and C4n-1/2+2m≤C4n/2+2, vertex distinguishing total chromatic number of "ladder graphs" Lm is n.
出处 《自动化与仪器仪表》 2010年第5期123-125,128,共4页 Automation & Instrumentation
基金 国家自然科学基金资助项目(10771091) 宁夏大学科学研究基金资助项目(No(E)ndzr09-15)
关键词 点可区别全染色 点可区别全色数 三角排序 梯图 Vertex distingushing total coloring Vertex distingushing total chromatic number Triangle sequence Ladder graph
  • 相关文献

参考文献2

二级参考文献15

  • 1张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 2张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16
  • 3张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 4Balister P N, Riordan O M, Schelp R H. Vertex-distinguishing edge colorings of graphs. J of Graph Theory, 2003, 42:95-109
  • 5Bazgan C, Harkat-Benhamdine A, Li H, et al. On the vertex-distinguishing edge colorings of grsphs. J of Combin Theory, 1999, 75:288-301
  • 6Burris A C, Schelp R H. Vertex-distinguishing proper edge-colorings. J of Graph Theory, 1997, 26:73-82
  • 7Zhang Z F, Liu L Z, Wang J F. Adjacent strong edge coloring of graphs. Applied Mathematics Letters,2002, 15:623-626
  • 8Hamed H. △ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J of Combinatorial Theory, Series B, 2005, 95:246-256
  • 9Li J W, Zhang Z F, Chen Xiang'en et al. A note on adjacent strong edge coloring of k(n,m), Acta Mathematicae Applicatae Sinica, 2006, 22(2): 273-276
  • 10Li J W, Yao B, Cheng H, et al. Adjacent vertex-distinguishing edge chromatic number of Cm V Kn. J of Lanzhou Univercity (Natural Sciences), 2005, 41(1): 96-98

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部