期刊文献+

基于改进型脉冲耦合神经网络的乳腺图像肿块分割

Simplified Pulse-coupled Neural Network for Segmentation of Breast Mass
下载PDF
导出
摘要 目前,对乳腺癌的诊断主要靠放射科医生大量读片,容易造成误诊与漏诊。乳腺肿块分割是乳腺癌计算机辅助诊断(CAD)检测和识别系统中关键的一步。本文基于改进型的PCNN神经网络,设置随时间单调上升的阈值,对乳腺肿瘤进行分割,肿块分割完全,分割出的肿块边缘平滑,细节保持较好,能够较好地把目标提取出来。实验结果表明:该方法拥有较好的分割效果。 At present,the diagnosis of breast cancer by radiologists reading a lot of films,it easily lead to misdiagnosis and missed diagnosis.Computer-aided breast mass segmentation is a breast cancer diagnosis(CAD) detection and identification system in a crucial step.This simplified pulse-coupled neural network,set the threshold which increases monotonically time to segment the breast mass,breast mass segmentation complete,separate out the mass edges smooth,detail is maintained well and can better target extracted.Experimental results show that the method has better segmentation effect.
出处 《科技广场》 2010年第7期41-43,共3页 Science Mosaic
关键词 乳腺肿块 脉冲耦合神经网络 分割 Mass Pulse-coupled Neural Networks Segmentation
  • 相关文献

参考文献9

  • 1Cai Xiaopeng,ChenXiaowei,Hu Liming;et al.Compurer-aided detection and classification of microcalcifications in mammograrns:A survey Pattern Recognition,2003,36(12):2967-2991.
  • 2欧阳成,丁辉,王广志.乳腺X线图像肿块分割[J].北京生物医学工程,2007,26(3):237-240. 被引量:8
  • 3景香香,刘望彭,康春松,杨永生,刘利平,袁霞萍,陈武.多普勒超声对乳腺肿块鉴别诊断的研究[J].中国医学影像技术,2003,19(5):552-554. 被引量:40
  • 4Kitaoka F,Sakai H,Kuroda Y,etal.Intenal echo histogram examination has a role in distinguishing malignant tumors from benign masses in the breast[J].Clin Imaging,2001,25(2):151-153.
  • 5Chou YH,Tiu CM,Hung GS,etal.Stepwise logistic regressiong analysis of tumor contour features for breast ultrasound diagnosis[J].UltrasoundMedbiol,2001,27(11):1493-1498.
  • 6胡纯,刘奇.乳腺肿瘤超声图像形态特征参数分析[J].生物医学工程学进展,2008,29(4):206-209. 被引量:3
  • 7王曙燕,周明全,耿国华.模糊聚类分析在乳腺癌图像分类中的应用[J].计算机应用与软件,2006,23(10):103-104. 被引量:5
  • 8Zhaobin Wang,Yide Ma,Feiyan Cheng,Lizhen Yang.Review of pulse-coupled neural networks[J].Image and Vision Computing,28(2010):5-13.
  • 9Meihong Shi,Shoushan Jiang,Huiran Wang,Bugao Xu.A Simplified pulse-coupled neural network for adaptive segmentation of fabfic defects[J].Machine Vision and Applications,2009,20:131-138.

二级参考文献36

  • 1林其忠,余建国,赵暖,王威琪,王怡,陈亚青.乳腺肿瘤超声图像的特征分析[J].仪器仪表学报,2006,27(z1):744-746. 被引量:5
  • 2景香香,刘望彭,康春松,杨永生,刘利平,袁霞萍,陈武.多普勒超声对乳腺肿块鉴别诊断的研究[J].中国医学影像技术,2003,19(5):552-554. 被引量:40
  • 3陈克敏,秦茜淼,茅蓉,陈为民,华秀云.超声检查在良恶性乳腺肿块评估中的作用[J].中华放射学杂志,1995,29(3):154-157. 被引量:14
  • 4孙克英,王昌元,李月卿,孙凤国,王巍.乳腺肿块的分割方法[J].泰山医学院学报,2005,26(3):261-263. 被引量:1
  • 5[1]Folkman J,Hochbergm. Self-regulation of growth in three dimensions [J]. J Exp Med,1973,138(4):745-753.
  • 6[2]Vaupl P,Kallinowski F,Okunieff P. Blood flow oxygen and nutrient supply,and metabolic microenvironment of human tumors:a review[J].Cancer Res,1989,49(23):6449-6465.
  • 7[5]Adler DD,Carson PL,Rubin JM,et al. Doppler ultrasound color flow imaging in the study of breast cancer: Preliminary findings [J]. Ultrasound Med Biol,1990,16(6): 553-559.
  • 8[7]Cosgrove DO,Bamber JC,Davery JB,et al. Color Doppler signals from breast tumors:work in progress[J].Radiology,1990,176(1):175-180.
  • 9[8]Kedar RP,Cosgrove DO,Bamber JC,et al. Automated quantification of color Doppler signals:a preliminary study in breast tumors[J]. Radiology,1995,197(1):39-43.
  • 10[9]Rubin JM,Adler RS.Power Doppler expands standard color capability[J]. Diagnostic Imaging,1993,12(12):66-69.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部