期刊文献+

快速无参数背景建模的红外目标检测方法研究

Object detection in infrared image with fast nonparametric background model
下载PDF
导出
摘要 针对复杂背景红外图像序列目标检测的难题,给出了一种用于红外监控系统中入侵目标检测的背景建模方法。应用特征样本集为每一个像素建立统计无参数样本集模型,根据核函数估计计算每一个像素值对模型的符合概率。使用双阈值进行目标检测和模型更新,将图像分为三类:可靠背景、感兴趣区域和不可靠背景。通过不可靠背景类提供的信息进一步将感兴趣区域细分为入侵目标和错误检测。对几种红外图像序列仿真实验表明,该算法不仅可以比较精确的检测显著入侵目标,对于容易淹没在噪声中的弱小入侵目标也可以实现准确地检测。 A background subtraction method is introduced with nonparametric background model for infrared surveillance application.This model employs a sample set as the statistical model of each pixel,and calculates conforming possibility of a pixel's value with kernel estimation.Two thresholds are adopted for object detection and model updating,which segments the frame into three categories:reliable background,unreliable background and interest region.Interest region is segmented into intruding object and false positive detection with context provided by unreliable background.Experiments with several infrared image sequences show that this method could precisely detect salient intruding object and weak intruding object that is easy to be confused with noise.
机构地区 北京理工大学
出处 《光学技术》 CAS CSCD 北大核心 2010年第5期758-763,共6页 Optical Technique
关键词 光学测量 红外目标检测 背景消除 核估计 optical measurement infrared object detection background subtraction kernel estimation
  • 相关文献

参考文献11

  • 1Piccardi M. Background subtraction techniques: A review[C]. Proceedings of IEEE Conference on Systems, Man, and Cybernetics, Hague, Netherlands, 2004:3099-3104.
  • 2肖梅,韩崇昭,张雷.一种视频序列的背景提取算法[J].光电工程,2005,32(4):78-81. 被引量:13
  • 3Lee D S. Effective gaussian mixture learning for video hack- ground subtraction[J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2005, 27(5): 827--832.
  • 4Elgammal A, Harwood. D. Non--parametric model for back- ground subtraction[C]. Proceedings of European Conference on Computer Vision, Dublin, Ireland: Springer Pres, 2000: 751-- 767.
  • 5Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance[C]. Proceedings of the Seventh International Conference on Computer Vision, Kerkya, Greece, 1999:255-261.
  • 6胡士凌,孔得人.电子线路[M],北京,北京理工大学出版社,1996.
  • 7Hyndman R L, Zhang X B, King M L. Bandwidth selection for multivariate kernel density estimation using MCMC[C]. Econometric Society 2004 Australasian Meetings, Melbourne, Australia, 2004: 120.
  • 8Wang B, Wang X F. Bandwidth selection for weighted kernel density estimation [J]. Electronic Journal of Statistics, 2008.
  • 9任玉杰.核估计量、窗宽与置信带[J].应用数学,2001,14(S1):65-68. 被引量:1
  • 10Yang C, Duraiswami C, Gumerov N, et al. Improved fast Gauss transform and efficient kernel density estimation[C]. In IEEE International Conference on Computer Vision, Nice, France, 2003: 464--471.

二级参考文献13

  • 1刘永信,魏平,侯朝桢.视频图像中运动目标检测的快速方法[J].仪器仪表学报,2002,23(z3):163-166. 被引量:21
  • 2Christopher Richard WREN,All AZARBAYEJANI,Trevor DARRELL,et al.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 3Chris STAUFFER,W.E.L.GRIMSON.Adaptive background mixture models for real-time tracking[J].Computer Vision and Pattern Recognition, 1999.IEEE Computer Society Conference on,1999,2:245-252.
  • 4Dar-Shyang LEE,Jonathan J.HULL,Berna EROL.A Bayesian framework for Gaussian mixture background modeling [A].Image Processing, 2003.Proceedings.2003 International Conference on,2003,3:973-976.
  • 5Zoran ZIVKOVIC,Ferdinand VAN DER HEIJDEN.Recursive unsupervised learning of finite mixture models[J].IEEE Transactions on pattern analysis and machine intelligence,2004,26(5):651-656.
  • 6Zoran ZIVKOVIC.Improved adaptive Gaussian mixture model for background subtraction[J].Pattern Recognition, 2004.ICPR 2004.Proceedings of the 17th International Conference on,2004,2:28-31.
  • 7Ahmed ELGAMMAL,David HARWOOD,Larry DAVIS.Non-parametric model for background subtraction [A].Proceedings of the 6th European Conference on Computer Vision[C].London, UK:Springer-Verlag,2000.751-767.
  • 8Christof RIDDER,Olaf MUNKELT,Harald KIRCHNER.Adaptive background estimation and foreground detection using Kalman-Filtering [A].Proceedings of the International Conference on recent Advances in Mechatronics[C].Istanbul, Turkey:UNESCO Chair on Mechatronics,1995.193-199.
  • 9Kentaro TOYAMA,John KRUMM,Barry BRUMITT,et al.Wallflower:principles and practice of background maintenance[J].Computer Vision, 1999.The Proceedings of the Seventh IEEE International Conference on,1999,1:255-261.
  • 10P.REMAGNINO,A.BAUMBERG,T.GROVE,et al.An integrated traffic and pedestrian model-based vision system[J].Proceedings of the eighth British Machine Vision Conference,1997,2:380-389.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部