期刊文献+

基于原子内聚力与表面能等效的内聚裂纹模型 被引量:3

A Surface-energy Equivalent Cohesive Crack Model Based on Atomic Cohesive Force
原文传递
导出
摘要 从非局部连续介质理论出发,采用一种新的理性力学方法对裂纹前缘内聚应力分布规律进行研究。首先,在内聚裂纹表面引入非局部应力边界条件,从而将内聚区内表面诱发张力(非局部表面残余)与内聚应力等价联系起来;然后,利用能量平衡关系,得到仅与表面能密度相关的I型裂纹内聚力新的本构方程。最后,在推导结果的基础上,计算一个具体的脆性断裂算例研究内聚区内表面能与内聚应力随裂纹张开位移(COD)变化的分布规律。由计算结果发现,裂纹尖端应力奇异性消除,且应力最大值不一定出现在裂纹尖端,而是发生在裂纹尖端周围的内聚区内。 Starting with the nonlocal continuum theory, a new rational mechanics method is applied to study logically the cohesive stress law of ahead of a crack tip. First, the equivalence between the cohesive stress and the surface-induced traction (nonlocal surface residual) within the cohesive zone is established by introducing nonlocal stress boundary conditions on the crack surface. Then, by means of the energy balance relation, a new cohesive stress law of Mode I crack is obtained which is only concerned with the surface energy density within the cohesive zone. On the basis of the results, a concrete example of brittle balance is calculated to investigate the distribution of surface energy and cohesive stress which changes with the variation of crack opening displacement (COD). Finally, a summary of the study is provided and several conclusions are made. The results show that the stress singularity at the crack tip is removed, and the maximum stress may occur within the cohesive zone away from thc crack tip.
作者 姚寅 黄再兴
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第9期1796-1801,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10472135)
关键词 非局部应力边界条件 内聚裂纹模型 能量平衡 表面能 表面诱发张力 裂纹尖端张开位移 脆性断裂 nonlocal stress boundary condition cohesive crack model energy balance surface energy surfaceinduced traction crack tip opening displacement brittle fracture
  • 相关文献

参考文献22

  • 1Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8 (2): 100-104.
  • 2Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962(7): 55-129.
  • 3Willis J R. A comparison of the fracture criteria of Griffith and Barenblatt[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(3): 151-162.
  • 4Smith E. The structure in the vicinity of a crack tip: a general theory based on the cohesive zone model[J]. Engineering Fracture Mechanics, 1974, 6(2): 213-222.
  • 5Reinhardt H W. Crack softening zone in plain concrete under static loading[J]. Cement and Concrete Research, 1985, 15(1): 42-52.
  • 6Bilby B A, Cottrell A H, Swinden K H. The spread of plastic yield form a notch[J]. Proceedings of Royal Society London: Series A, 1963, 272(1350): 304-314.
  • 7Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386.
  • 8Rice J R. Dislocation nucleation from a crack tip: an analy-sis based on the Peierls concept[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(2): 239-271.
  • 9Foote R M L, Mai Y W, Cottrell B. Crack growth resistance curves in strain-softening materials[J]. Journal of the Mechanics and Physics of Solids, 1986, 34(6): 593-607.
  • 10Needleman A. An analysis of tensile decohesion along an interface[J]. Journal of the Mechanics and Physics of So-lids, 1990, 38(3): 289-324.

同被引文献34

  • 1蒙上阳,唐国金,雷勇军.固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析[J].固体火箭技术,2004,27(1):46-49. 被引量:28
  • 2隋玉堂,杨兴根.火箭发动机界面脱粘分析及检测新方法[J].飞航导弹,2001(1):43-46. 被引量:29
  • 3袁端才,雷勇军,唐国金,蒙上阳.长期贮存的固体发动机药柱脱粘界面裂纹分析[J].国防科技大学学报,2006,28(3):19-23. 被引量:11
  • 4Serebrinsky S, Carter E A, Ortiz M. A quantum-me- chanically informed continuum model of hydrogen em-brittlement [J]. J Mechanics and Physics of Solids, 2004, 52(10) .. 2403-2430.
  • 5Liang Y, Sofronis P. Toward a phenomenological de- scription of hydrogen induced decohesion at particle/ matrix interfaces [J]. J Mechanics and Physics ofSolids, 2003, 51(8) .. 1509-1531.
  • 6Olden V, Thaulow C, Johnsen R, et al. Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25Cr duplex stainless steel [J]. Engineering Fracture Mechanics, 2008, 75(8): 2333-2351.
  • 7Olden V, Thaulow C, Johnsen R, et al. Cohesive zone modeling of hydrogen-induced stress cracking in 25% Cr duplex stainless steel [J]. Seripta Materia- lia, 2007, 57(7): 615-618.
  • 8Olden V, Thaulow C, Johnsen R, etal. Influence of hydrogen from cathodic protection on the fracture susceptibility of 25 Cr duplex stainless steel- Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements [J]. En- gineering Fracture Mechanics, 2009, 76(7) : 827-844.
  • 9Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed frac- ture of high strength steel by constant load test and numerical calculation [J]. Corrosion Science, 2006, 48(8) : 2189-2202.
  • 10Dugdale D S. Yielding of steel sheets containing slits [J]. Mechanics and Physics of Solids, 1960, 8: 100- 104.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部