期刊文献+

行星表面陨石坑检测与匹配方法 被引量:21

Autonomous Crater Detection and Matching on Planetary Surface
原文传递
导出
摘要 针对深空探测器光学导航技术的需要,提出了行星表面陨石坑导航路标的提取与匹配方法。陨石坑是行星表面最显著的地形特征,在光照条件下,陨石坑具有清晰的几何轮廓。结合光照方向,通过陨石坑边缘的检测、边缘配对以及形状参数拟合等处理实现陨石坑的提取。对检测出的陨石坑,基于平面二次曲线的几何不变特性,采用投票策略实现与陨石坑数据库的匹配,并设计陨石坑误匹配及失配的校正策略,从而有效地确定陨石坑在目标天体表面的全局位置。最后通过嫦娥一号获得的目表图像验证了所提方法的有效性和可行性。 This article presents a crater landmark detection and matching method for pinpoint navigation for planetary exploration. Craters are the most notable terrain features with clear outlines in lighting conditions. While taking into consideration the direction of the lighting source, the craters are detected through edge detection, edge clustering of the same crater and ellipse fitting. Based on the geometric invariants of coplanar con ics, the voting strategy is used to match the detected craters with the crater database. Besides, a false match and miss match revision strategy is proposed to obtain the crater's accurate global position. Lunar surface images obtained by Chang' e-1 are given to show the feasibility of the proposed method.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第9期1858-1863,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60874094)
关键词 行星软着陆 光学导航 陨石坑路标 陨石坑检测 陨石坑匹配 planetary landing optical navigation crater landmark crater detection crater matching
  • 相关文献

参考文献15

  • 1Weismuller T, Caballero D, Leinz M. Technology for autonomous optical planetary navigation and precision landing[C]∥AIAA Space 2007 Conference & Exposition. 2007, 2: 1924-1949.
  • 2Ansar A, Yang C. An analysis of spacecraft localization from desent image data for pinpoint landing on Mars and other cratered bodies[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(10): 1197-1204.
  • 3Johnson A E, Willson R, Yang C, et al. Design through operation of an image-based velocity estimation system for Mars landing[J]. International Journal of Computer Vision, 2007, 74(3): 319-341.
  • 4Trawny N, Mourikis A, Roumeliotis S I, et al. Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks[J]. Journal of Field Robotics, 2007, 24(5): 357-378.
  • 5Yang C, Johnson A E, Matthies L H, et al. Optical landmark detection for spacecraft navigation[C]∥ Proceedings of the 13th Annual AAS/AIAA Space Flight Mechanics Meeting. 2003: 1785-1803.
  • 6Kim J R, Muller J P, van Gasselt S, et al. Automated crater detection, a new tool for Mars cartography and chronology[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(10): 1205-1217.
  • 7Sawabe Y, Matsunaga T, Rokugawa S. Automated detection and classification of lunar craters using multiple approaches[J]. Advances in Space Research, 2006, 37(1): 21-27.
  • 8Bandeira L P C, Saraiva J, Pina P. Development of a methodology for automated crater detection on planetary images[M]∥ Pattern Recognition and Image Analysis. Berlin: Springer, 2007: 193-200.
  • 9Ding M, Cao Y F, Wu Q X. Autonomous craters detection from planetary image[C]∥ Proceedings of the 3rd International Conference on Innovative Computing Information and Control. 2008.
  • 10Singh L, Lim S. On lunar on-orbit vision-based navigation: terrain mapping, feature tracking driven EKF[R]. AIAA-2008-6834, 2008.

同被引文献250

引证文献21

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部