期刊文献+

小波互信息及其在RR序列分析中的应用 被引量:1

Application of Wavelet Mutual Information in Cardiac RR Intervals Series
下载PDF
导出
摘要 目的:探究信号小波成分中的有用信息,并分析心率随年龄的变化。方法:提出了从小波变换(WT)系数的延时互信息MI得出信号分析指标。以年轻(21-34岁)与年老(68-81岁)二组健康人的心电RR间期时间序列为实验数据,用db4为母小波对RR间隔进行WT,计算出MI的值,并取互信息最大值点与第一个极小值点的连线斜率的绝对值|k|为特征指标。结果:统计检验的结果显示:在不同尺度a=120,a=170,a=10时,小波变换系数的互信息的|k|都是年轻组明显大于年老组(P〈0.002)。结论:结果表明,RR间期时间序列的小波变换系数的延时互信息可反应心率变异性随年龄而减少。 Objective:To explore the useful information in wavelet components of a signal and the change of HRV with age.Methods:There exists a new method.The analysis indices of the signal are obtained from time-delayed mutual information(MI)of wavelet transform(WT) coefficients.The cardiac RR intervals series are used as experimental data collected from young(21-34 yr)and elderly(68-81 yr)groups of healthy subjects.The data analysis is performed by WT using Daubechies 4 as a mother wavelet.The characteristic indice |k| is calculated.Results:The results of statistical test show that all |k| of WT coeffi-cients at a = 170,a = 120,a = 10 are significantly higher in the young group than that in the elderly group(P〈 0.002).Con-clusions:The time-delayed MIs of cardiac RR intervals series indicates that the heart rate variability is decreased with aging.
作者 王磊 张佃中
出处 《中国医学物理学杂志》 CSCD 2010年第5期2138-2141,共4页 Chinese Journal of Medical Physics
关键词 小波变换系数 互信息 RR序列 wavelet transform coefficient mutual information RR intervals series
  • 相关文献

参考文献6

二级参考文献16

  • 1蔡志强,吴雅,周笠,杨叔子.故障诊断与切削颤振的小波分析[J].华中理工大学学报,1993,21(1):88-94. 被引量:15
  • 2赵鸿,柴路,王浩,刘书声.互信息在时间序列分析中的应用[J].应用科学学报,1996,14(1):48-52. 被引量:11
  • 3Makikatlio T H, Huikuri H V, Hintze U, et al. Fractal analysis and time and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure [J]. Am J Cardiol,2001,87(2) : 178-182.
  • 4Richman J S, Moorman J R. Physiological timeseries analysis using approximate entropy and sample entropy[J]. Am J Physiol Heart Circ Physiol,2000, 278(6) : H2039-H2049.
  • 5Andreia D, Rui M, Diana A M. Mutual information: a measure of dependency for nonlinear time series[J]. Physica A, 2004,344 (2):326-329.
  • 6HoyderD, Leder U, Hoyer H, et al. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infraction[J]. Medical Engineering Physics, 2002,24 (1) : 33-43.
  • 7Sun H N, Seung H J, Soo Y K, et al. EEG in schizophrenic patients: mutual information analysis[J]. Clinical Neurophysiology,2002,113(12): 1954- 1960.
  • 8Vigo D E, Guinjoan S M, Scaramal M, et al. Wavelet transform shows age-related changes of heart rate variability within independent frequency components[J]. Autonomic Neuroscience,2005, 123 (2) :94-100.
  • 9Pikkujamsa S M, Makikallio T H, Sourander L B,et al. Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory [J]. Circulation, 1999, 100(4): 393-399.
  • 10Lipsitz L A, Mietus J, Moody G B,et al. Spectral characteristics of heart rate variability before and during postural tilt relations to aging and risk of syncope[J]. Circulation, 1990,81 (6) : 1803-1810.

共引文献21

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部