期刊文献+

灰色大角间座壳菌(稻瘟病菌)蛋白激酶编码基因中SSR变异及其对蛋白结构的潜在影响 被引量:2

SSR variation in the protein kinase genes and it’s effects on protein structure of rice blast fungus Magnaporthe grisea
原文传递
导出
摘要 病原菌可以利用多种方式激活或者抑制蛋白激酶信号通路来增强其自身侵染力,在病原物与植物互作初期的信号识别和转导中蛋白激酶扮演着重要的角色。已有研究结果表明灰色大角间座壳菌(稻瘟病菌)蛋白激酶基因中含有丰富的SSR。作者通过对灰色大角间座壳菌(稻瘟病菌)基因组中的89个蛋白激酶基因的外显子区、内含子区、5′-UTR和3′-UTR区中的SSR进行了查找和分析,并对编码区中SSR的扩张或收缩对蛋白结构的影响进行了预测。结果表明,SSR在基因的调控区和编码区中的分布是不均一的,且这些基因的外显子区、内含子区、5′-UTR和3′-UTR区中SSR的组成和分布也均不相同;基因的编码区中三碱基和六碱基SSR相对较多,且SSR基序大都表现为GC含量较高,编码的亲水性氨基酸出现的频率也远远高于疏水性氨基酸。通过病菌群体中变异幅度的检测表明,几乎所有的SSR序列都存在多态性。根据灰色大角间座壳菌(稻瘟病菌)自然群体中SSR的变化幅度,对SSR的扩张或收缩对蛋白二级结构的影响进行预测,发现SSR的扩张或收缩都可能对蛋白的结构产生影响。这暗示着SSR的变异在致病相关基因的变异中可能起着十分重要的作用。 A pathogen is usually enhanced its infectivity through activating and repressing protein kinase signal pathway in some way or other. Protein kinases play important roles in signal identification and transduction at the preliminary stage of plant-pathogen interactions. It was showed that there were abundant simple sequence repeats (SSRs) in the protein kinase genes of Magnaporthe grisea. The SSRs were analyzed within the extron, intron, 5 untranslated region (5′-UTR) and 3 untranslated region (3′-UTR) of 89 protein kinase genes, respectively. The effect of SSR expansion and contraction on protein secondary structure was predicted in gene coding regions. As compared with other regions, tri-nucleotide and hexa-nucleotide were more frequently observed in coding region and G+C content was more abundant in the SSR motifs. In addition, the frequency of hydrophilic amino acids was relatively higher. Depending on the size variation among field isolates of the pathogen, the expansion or contraction of amino acids encoded by SSR sequences potentially affected on secondary structure of protein. The data of this study indicated that the mutation of SSR might play an important role for pathogenic gene mutation.
出处 《菌物学报》 CAS CSCD 北大核心 2010年第5期698-706,共9页 Mycosystema
基金 国家973项目(No2006CB100202) 国家自然科学基金(No30860161/C14)
关键词 灰色大角间座壳菌(稻瘟病菌) 微卫星重复序列 蛋白激酶 编码区 调控区 Magnaporthe grisea microsatellite protein kinase gene coding-region regulation-region
  • 相关文献

参考文献3

二级参考文献57

  • 1施勇烽,应杰政,王磊,朱智伟,庄杰云.鉴定水稻品种的微卫星标记筛选[J].中国水稻科学,2005,19(3):195-201. 被引量:82
  • 2李亚莉,杨晓曦,赵丰萍,许明辉.云南元江普通野生稻(Oryza rufipogon)群体籼粳分化的SSR分析[J].中国水稻科学,2006,20(2):137-140. 被引量:22
  • 3Kim N S, Park N I, Kim S H, etal. Isolation of TC/AG repeat microsatellite sequences for fingerprinting rice blast fungus and their possible horizontal transfer to plant species. Mol & Cells,2002, 10(2): 127-134.
  • 4Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res, 2000, 10:72-80.
  • 5Young E T, Sloan J S, Riper K V. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae.Genetics, 2000, 154:1053- 1068.
  • 6Katti M V, Ranjekar P K, Grpta V D. Differential distribution of simple sequence repeats in eukaryotics genome sequences. Mol Biol Evol, 2001, 18:1161 - 1167.
  • 7Ishii T, McCouch S R. Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species.Theor Appl Genet, 2000,100:1257- 1266.
  • 8W o stemeyer J, Kreibich A. Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet, 2000, 41:189-198.
  • 9Field D, Wills C. Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc Natl Acad Sci USA, 1998, 95:1647- 1652.
  • 10Cardle L, Ramsay L, Milbourne D. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847- 854.

共引文献44

同被引文献27

  • 1李成云,李进斌,周晓罡,张绍松,董爱荣,许明辉.稻瘟病菌阅读框架中SSR频率、分布及所在基因功能[J].中国水稻科学,2005,19(2):167-173. 被引量:14
  • 2刘红美,李晓瑜,刘耀光.用RNA干涉对几个水稻WD结构域基因的功能研究[J].华南农业大学学报,2007,28(3):47-51. 被引量:1
  • 3Deléage G,Combet C,Blanchet C et al.ANTHEPROT:Anintegrated protein sequence analysis software with client/servercapabilities. Computers in Biology and Medicine . 2001
  • 4Hopfer U,Hopfer H,Jablonski K et al.The novel WD-repeatprotein Morg1acts as a molecular scaffold for hypoxia-induciblefactor prolyl hydroxylase3 (PHD3). Journal of Biological Chemistry . 2006
  • 5Lau C,Bachorik JL,Dreyfuss G.Gemin5-snRNA interactionreveals an RNA binding function for WD repeat domains. Nature Srructural and Molcular Biology . 2009
  • 6David Cerna and David K. Wilson.The Structure of Sif2p, a WD Repeat Protein Functioning in the SET3 Corepressor Complex. Journal of Molecular Biology . 2005
  • 7Amack JD,Mahadevan MS.The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12myoblast differentiation. Human Molecular Genetics . 2001
  • 8Cummings CJ,Zoghbi HY.Trinucleotide repeats:mechanisms and pathophysiology. Annual Review of Genomics and Human Genetics . 2000
  • 9RochaEP,BlanchardA.Genomicrepeats,genomeplasticityandthe dynamicsofMycoplasmaevolution〔J〕. NucleicAcidsResearch . 2002
  • 10Welcker M,Clurman B E.FBW7 ubiquitin ligase:a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rer Cancer . 2008

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部