期刊文献+

脉冲动脉自旋标记技术测量正常脑白质血流量的局限性 被引量:6

Limitation of pulsed arterial spin labeling technique in the measurement of normal white matter perfusion
原文传递
导出
摘要 目的 探讨脉冲动脉自旋标记(PASL)灌注技术测量正常脑白质血流量(CBF)的局限性.方法 选取31例颅脑肿瘤患者,使用3.0 T MR系统进行可一次多层采集的第2版本薄层连续饱和技术的单减影灌注定量(Q2TIPSⅡ)PASL和动态磁敏感对比(DSC)灌注成像.观察PASL和DSC-CBF图的脑灌注表现.取病灶对侧大脑半球正常脑白质区做正常脑白质测量.在PASL-CBF和DSC-CBF图上,测量近端基底节层面和远端半卵圆中心层面ROI内的脑白质信号强度值,分别对PASL-CBF和DSC-CBF图不同层面所测值进行配对t检验,并对同一层面两种技术所测值进行Pearson直线相关性分析.结果 在远端层面的深部白质区域,PASL-CBF图显示为黑色的灌注缺失,而DSC-CBF图相应层面末见白质血流的缺失,仍显示为蓝色的低血流区.远端深部白质灌注信号随反转时间的延长而明显改善,但仍可见到黑色的信号缺失区 而灰质灌注信号随着反转时间的延长却稍有下降.远端层面的正常脑白质平均PASL-CBF为(-22.1±55.5)ml·100 g-1·min-1,近端层面脑白质为(89.5±45.5)ml·100 g-1·min-1,两者差异有统计学意义(t=-9.512,P〈0.05),而远端[(62.8±29.9)ml·100 g-1·min-1]和近端[(57.1±29.6)ml·100 g-1·min-1]层面脑白质的DSC-CBF差异无统计学意义(t=-1.607,P〉0.05) 两种技术测得的近端、远端层面脑白质信号强度无相关性(r值分别为-0.234、0.093,P值均〉0.05).结论 PASL技术在定量测量正常脑白质血流量时仍存在不足,定量的准确性受到ASL技术自身的局限性和所选择不同参数的影响. Objective To investigate the limitation of quantitative measurement of cerebral blood flow (CBF) of normal white matter by using a single subtraction with thin-slice TI1 periodic saturation (Q2TIPS Ⅱ ) pulsed arterial spin labeling (PASL)technique. Methods Thirty-one patients with brain tumors were examined at 3.0 T MRI system . A second version of quantitative imaging of perfusion using a single subtraction with additional thin-section periodic saturation after inversion and a time delay (Q2TIPS) technique of pulsed arterial spin labeling in the multisection mode and T2* dynamic susceptibility-weighted contrast-enhanced (T2* DSC)MR imaging were both implemented. Cerebral blood flow map obtained from PASL and DSC were reviewed. The regions of interest( ROI )were placed in the region of normal white matter contralateral to the lesion in the proximal and distal slices. In regions of interest, the signal intensity (SI)was measured from the maps of cerebral blood flow map obtained from PASL and DSC. Pair-t test was performed to determine if there were significant signal differences between proximal and distal slices. Pearson linear correlation analysis of signal intensity was performed for values from the same slices of PASL-CBF and DSC-CBF maps. Results In the deep white matter of distal slice, PASL-CBF map showed perfusion deficit while DSC-CBF map showed low CBF in the corresponding brain area. With the increased inversion time,the PASL-CBF map showed obviously improved perfusion signal in deep white matter (but still some perfusion deficit)and slightly decreased perfusion signal in grey matter. The mean signal of normal white matter measured from distal slices of PASL-CBF maps was( -22.1 ±55.5) ml· 100 g-1 · min-1 while it was (89.5 ±45.5) ml. 100 g-1 · min-1 in proximal slices. There was a significant difference of signal intensity from PASL-CBF maps between distal and proximal slices ( t = - 9. 512, P 〈 0. 01 =, while no difference of signal intensity between distal[ (62. 8 ± 29.9) ml · 100 g-1 · min-1] and proximal slices [(57. 1 ±29.6) ml · 100 g-1 · min-1 ]was obtained from DSC-CBF maps(t= -1.607,P〉0.05). There was no significant correlation between PASL-CBF and DSC-CBF in both distal ( r = 0. 093, P 〉 0. 05 ) and proximal slices ( r = - 0. 234, P 〉 0. 05). Conclusions PASL has limitation in the accurate quantification of cerebral blood flow of normal white matter. The quantification of CBF was affected by the limitations of the technique itself and the different parameters chosen..
出处 《中华放射学杂志》 CAS CSCD 北大核心 2010年第9期980-984,共5页 Chinese Journal of Radiology
关键词 磁共振成像 灌流 Brain Perfusion Magnetic resonance imaging
  • 相关文献

参考文献11

  • 1王梅云,戴建平,程敬亮,高培毅,李少武,艾林,张玉梅,李树新.动脉血质子自旋标记与动态磁敏感对比MRI在急性脑缺血患者中的应用价值[J].中华放射学杂志,2007,41(11):1162-1165. 被引量:13
  • 2Barbier EL,Lamalle L,Décorps M.Methodology of brain perfusion imaging.Magn Reson Imaging,2001,13:496-520.
  • 3Momjian S,Owler BK,Czosnyka Z,et al.Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus.J Brain,2004,127:965-972.
  • 4Owler BK,Momjian S,Czosnyka Z,et al.Normal pressure hydrocephalus and cerebral blood flow:a PET study of baseline values.J Cereb Blood Flow Metab,2004,24:17-23.
  • 5Knutsson L,St(a)hlberg F,Wirestam R.Absolute quantification of perfusion using dynamic susceptibility contrast MRI:pitfalls and possibilities.MAGMA,2010,23:1-21.
  • 6Carroll TJ,Teneggi V,Jobin M,et al.Absolute quantification of cerebral blood flow with magnetic resonance,reproducibility of the method,and comparison with H2 (15) O positron emission tomography.J Cereb Blood Flow Metab,2002,22:1149-1156.
  • 7van Osch MJ,Teeuwisse WM,van Walderveen MA,et al.Can arterial spin labeling detect white matter signal? Magn Reson Med,2009,62:165-173.
  • 8van Gelderen P,de Zwart JA,Duyn JH,et al.Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling.Magn Reson Med,2008,59:788-795.
  • 9Luh WM,Wong EC,Bandettini PA,et al.QUIPSS Ⅱ with thinslice TI1 periodic saturation:a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling.Magn Reson Med,1999,41:1246-1254.
  • 10Campbell AM,Beaulieu C.Comparison of multislice and single slice acquisitions for pulsed arterial spin labeling measurements of cerebral perfusion.Magn Reson Imaging,2006,24:869-876.

二级参考文献14

  • 1Luh WM, Wong EC, Bandettini PA, et al. QUIPSS Ⅱ with thinslice TI1 periodic saturation: a method for improving accuracy of quantitative peffusion imaging using pulsed arterial spin labeling, Magn Reson Med, 1999,41:1246-1254.
  • 2Siewert B, Schlaug G, Edelman RR, et al. Comparison of EPISTAR and T2^* -weighted gadolinium- enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology, 1997,48:673-679.
  • 3Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction ( QUIPSS and QUIPSS Ⅱ). Magn Reson Med, 1998,39:702-708.
  • 4Ewing JR, Cao Y, Knight RA, et al. Arterial spin labeling: validity testing and comparison studies. J Magn Reson Imaging, 2005,22:737-740.
  • 5Williams DS. Quantitative perfusion imaging using arterial spin labeling(Review). Methods Mol Med, 2006,124:151-173.
  • 6Buxton RB. Quantifying CBF with arterial spin labeling, J Magn Reson Imaging,2005, 22:723-726.
  • 7Detre JA, Alsop DC, Vives LR, et al. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology, 1998,50:633-641.
  • 8Chalela JA, Alsop DC, Gonzalez-Atavales JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling, Stroke,2000,31:680-687.
  • 9van Laar PJ, van der Grond J, Mali WP, et al.Magnetic resonance evaluation of the cerebral circulation in obstructive arterial disease(Review). Cerebrovasc Dis,2006,21:297-306.
  • 10Wirestam R, Ryding E, Lindgren A, et al. Regional cerebral blood flow distributions in normal volunteers: dynamic susceptibility contrast MRI compared with ^99Tc^m HMPAO SPECT. J Comput Assist Tomogr,2000 ,24 :526-530.

共引文献12

同被引文献47

引证文献6

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部