期刊文献+

均衡稳健性与有效性的设计

Designs Balance Between Robustness and Efficiency
原文传递
导出
摘要 均匀设计和最优设计是两类重要的设计类型,各有优缺点.本文考虑门限接受法构造多维的确定性D-最优设计,然后结合均匀设计与D-最优设计而给出一种构造设计的方法,模拟结果显示该构造方法所构造的设计可以有效地均衡稳健性和有效性. In experimental design,optimal design and uniform design are two important types of designs.They have different advantages and shortcomings.In this paper,the threshold accepting algorithm is considered to construct the multi-dimension D-optimal design.And based on the D-optimal design and uniform design,a new type of design, constructed by a new algorithm,is considered.Numerical results show that this type of design has a trade-off between the D-efficiency and robustness.
作者 周永道
出处 《应用数学学报》 CSCD 北大核心 2010年第5期805-813,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金数学天元基金(10926046) 四川大学青年科学基金(2008130) BNU-HKBU联合国际学院统计与智能计算研究所资助项目
关键词 D-效率 稳健性 门限接受法 均匀设计 最优设计 D-efficiency optimal design robustness threshold accepting algorithm uniform design
  • 相关文献

参考文献11

  • 1Atkinson A C, Donev A N. Optimum Experimental Designs. Oxford: Clarendon Press, 1992.
  • 2Fang K T. The Uniform Design: Application of Number-theoretic Methods in Experimental Design. Acta Math. Appl. Sinica, 1980, 3:363-372.
  • 3Yue R X, Hickernell F J. Robust Designs for Fitting Linear Models with Misspecification. Statist. Sinica, 1999, 9:1053-1069.
  • 4Niederreiter H. Random Number Generaion and Quasi-Mente Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, 1992.
  • 5Hickernell F J. A Generalized Discrepancy and Quadrature Error Bound. Math. Comp. 1998, 67: 299-322.
  • 6Hickernell F J. Lattice Rules: How Well do they Measure up? In: P. Hellekalek and G. Larcher, Eds., Random and Quasi-Random Point Sets, Lecture Notes in Statistics, Vol. 138. New York: Springer-Verlag, 998, 109-166.
  • 7Dueck G, Scheuer T. Threshold Axxepting: a General Purpose Algorithm Appearing Superior to Simulated Annealing. J. Computational Physics, 1991, 90:161-175.
  • 8Winker P, Fang K T. Application of Threshold-accepting to the Evaluation of the Discrepancy of a Set of Points. SIAM J. Numer. Anal., 1997, 34:2028-2042.
  • 9Gaffke N, Heiligers B. Algorithm for Optimal Design with Application to Multiple Polynomial Regression. Metrika, 1995, 42:173-190.
  • 10Cressie N. The Origins of Kriging. Mathematical Geology, 1990, 22:239-252.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部