期刊文献+

Application of Moore-Penrose Inverse in Deciding the Minimal Martingale Measure

Application of Moore-Penrose Inverse in Deciding the Minimal Martingale Measure
原文传递
导出
摘要 The Moore-Penrose inverse is an important tool in algebra.This paper shows that the MoorePenrose inverse is also an effcient technique in determining the minimal martingale measure if a security price follows a semi-martingale which satisfies some structure condition.We extend a result of Dzhaparidze and Spreij concerning the Moore-Penrose inverse to the case that the Moore-Penrose inverse of any matrix-valued predictable process is still predictable.Furthermore,we obtain an explicit formula of the minimal martingale measure by employing the Moore-Penrose inverse.Specifically,the minimal martingale measure in a generalized Black-Scholes model is found.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第4期653-660,共8页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No.10871064) the Key Laboratory of Computational and Stochastic Mathematics and It's Applications,Universities of Hunan Province,Hunan Normal University and the Soft Scientific Research Funds of Hunan Provincial Science & Technology Department of China (No.2009ZK4021)
关键词 Moore-Penrose inverse minimal martingale measure semi-martingales structure condition Moore-Penrose inverse minimal martingale measure semi-martingales structure condition
  • 相关文献

参考文献15

  • 1Davis, M. Option pricing in incomplete markets. In: Mathematics of Derivative Securities, ed. by M.A.H. Dempster and S.R. Pliska, Cambridge University Press, 1998, 216 226.
  • 2Delbaen, F., Schachermayer, W. The variance-optimal martingale measure for continuous processes. Bernoulli, 2(1): 81-105 (1996).
  • 3Dzhaparidze, K., Spreij, P. On correlation calculus for multivariate martingales. Stochastic Processes and their Applications, 46(2): 283-299 (1993).
  • 4Follmer, H., Schweizer, M. Hedging of contingent claims under incomplete information. In: Applied Stochastic Analysis, Stochastics Monographs, Vol. 5, ed. by M.H.A. Davis and R. J. Elliott, Gordon and Breach, London/New York, 1991, 389-414.
  • 5Follmer, H., Sondermann, D. Hedging of non-redundant contingent claims. In: Contributions to Mathematical Economics, ed. by W. Hildbrand and A. Mas-Colell, Amsterdan, North-Holland, 1986, 205-233.
  • 6Gerber, H.U., Shiu, E.S.W. Option pricing by Esscher transforms. Transactions of the Society of Actuaries, 46:99-140 (1994).
  • 7Gerber, H.U., Shiu, E.S.W. Martingale approach to pricing perpetual American options. ASTIN Bulletin, 24(2): 195-220 (1994).
  • 8Heston, L.S. A cosed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2): 327-343 (1993).
  • 9Hull, J.C., White, A. The pricing of options on assets with stochastic volatilities. Journal of Finance, 42(2): 281-300 (1987).
  • 10Miyahara, Y. Canonical martingale measures of incomplete assets markets. In: Probability Theory and Mathematical Statistics: Proceedings of the Seventh Japan-Russia Symposium, ed. by S. Watanabe et al, Tokyo, 1996, 343-352.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部