期刊文献+

共单调可加g-估价的一些结果

Some Results of g-Evaluation with Comonotonic Additivity
原文传递
导出
摘要 研究了由倒向随机微分方程诱导的未定权益的价格系统理论——g-估价理论,分析了具有共单调可加性的g-估价的一些性质;利用具有共单调可加性的算子特征、倒向随机微分方程解关于终值的连续性以及倒向随机微分方程生成元的表示定理,证明了如果一个g-估价满足共单调可加性,则它也满足正齐次性,并且相应的生成元g关于变量y,z是正齐次的,同时有g(t,0,0)≡0.进一步地,若布朗运动的维数为1,利用生成元表示定理,得到了生成元g关于变量y,z是可加的一个充分条件,并由此得到了生成元g的表达形式. Some properties of g-evaluation with comonotonic additivity were studied.Based on the characterization of the operator with comonotonic additivity,the continuity of solutions of backward stochastic differential equations with respect to terminal data and the representation theorem for generators of backward stochastic differential equations,if a g-evaluation satisfies the property of comonotonic additivity,then it also satisfies the positively homogeneous property,the corresponding generator g must be positively homogeneous with respect to variables y and z and g(t,0,0)≡0.Furthermore,if the dimension of brownian motion is one,based on the representation theorem for generators of backward stochastic differential equations,a sufficient condition for generator g is additive with respect to variables y,z is presented.At the same time,the explicit formation of generator g is proposed.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2010年第5期790-794,共5页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(10971220) 全国优秀博士学位论文作者专项资金项目(200919) 江苏省"青蓝工程"计划
关键词 倒向随机微分方程 G-期望 条件G-期望 g-估价 共单调可加性 backward stochastic differential equation g-expectation conditional g-expectation g-evaluation comonotonic additivity
  • 相关文献

参考文献2

二级参考文献10

  • 1JIANG Long Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, China,Institute of Mathematics, Fudan University, Shanghai 200433, China,School of Mathematics and System Sciences, Shandong University, Jinan 250100, China.Limit theorem and uniqueness theorem of backward stochastic differential equations[J].Science China Mathematics,2006,49(10):1353-1362. 被引量:6
  • 2JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 3Long JIANG Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China,School of Mathematical Sciences, Fudan University, Shanghai 200433, China,School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..Jensen's Inequality for Backward Stochastic Differential Equations[J].Chinese Annals of Mathematics,Series B,2006,27(5):553-564. 被引量:10
  • 4Pardoux E and Peng S. Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14(1990), 55-61.
  • 5E1 Karoui N, Peng S and Quenez M C. Backward stochastic differential equations in finance,Mathematical Finance, 7(1)(1997), 1-71.
  • 6Chen Z. A property of backward stochastic differential equations, C R Acad Sci. Paris, Sdrie I,326(4)(1998), 483-488.
  • 7Coquet F, Hu Y, Memin J and Peng S. A converse comparison theorem for BSDEs and related properties of g-expectation, Electon Comm Probab, 5(2000), 101-117.
  • 8Chen, Z and Epstein, L. Ambiguity, risk and asset returns in continuous time, Econometrica,70(2002), 1403-1443.
  • 9Peng, S. A generalized dynamic programming principle and Hamilton-Jacobl-Bellman equation,Stochastics, 38(2)(1992), 119-134.
  • 10林清泉.一类倒向随机微分方程比较定理[J].华中科技大学学报(自然科学版),2001,29(A01):1-3. 被引量:4

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部