期刊文献+

SBR工艺除磷过程控制与种群监测策略 被引量:1

Strategy for Real-time Control of Phosphorus Removal and for Monitoring Community Structure in SBRs
下载PDF
导出
摘要 现有SBR的时序过程控制无法应对水质的波动,已经造成了能源的无效输入和水质管理的失败.为了解决这一问题,研究开发了以节能和优化处理效能为目标的SBR除磷过程实时控制策略.试验中建立了3个具有不同除磷种群结构的SBR系统作为研究对象,通过监测系统内厌氧放磷和好氧吸磷过程中磷的动力变化及其在线ORP和pH值的特征曲线,确立了ORP和pH作为除磷过程在线控制参数的控制策略.研究发现,厌氧pH曲线变化趋势对生物种群结构的变化具有很好的指示作用.可以建立预测系统内聚糖菌和聚磷菌的相对数量的监测诊断系统. Fixed time-schedule control strategy for SBR duration is unable to adjust cycle duration according to input wastewater characteristics and loading, which results in an inefficient operation, i.e. inefficient energy consumption or poor control over effluent quality. A real-time control strategy for enhanced performance and energy saving was developed in this research. Three laboratory-scale EBPR SBRs with different ecology community structure were applied to treat real domestic wastewater. Continuous measurements of ORP and pH were related to the dynamic behaviors of anaerobic phosphorus release and aerobic phosphorus uptake in the SBR, allowing the detection of phosphorous removal. The knee point on aerobic pH profile provided information for species structure of ecology. On basis of it, monitor strategy was specified to predict behavior of functional microorganism.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第9期1271-1276,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金项目(50908002) 北京市自然科学基金项目(8102006) 北京工业大学校青年基金项目
关键词 实时控制 强化生物除磷 续批式活性污泥 种群结构 real-time control enhanced biological phosphorous removal sequence batch reactors ecology community structure
  • 相关文献

参考文献22

  • 1WILDERER P A, IRVINE R L, GORONSZY M C. Sequencing batch reactor technology[ M]. London: IWA Publishing, 2001: 101-125.
  • 2MARSILI-LIBELLI S. Control of SBR switching by fuzzy pattern recognition[ J]. Wat Res, 2006, 40: 1095-1107.
  • 3MACE S, MATA-ALVAREZ J. Utilization of SBR technology for wastewater treatment: an overview[ J]. Ind Eng Chem, 2002, 41 : 5539-5553.
  • 4ARTAN N, ORHON D. Mechanisms and design of sequencing batch reactors for nutrient removal. IWA Scientific and Technical Report no. 19 [ M ]. London : IWA Publishing, 2005 : 69-72.
  • 5PLISSON-SAUNE S. Real-time control of nitrogen removal using three ORP bending points: signification, control strategy and results[ J]. Wat Sci Technol, 2005, 33 ( 1 ) : 275-280.
  • 6KATSOGIANNIS A N, KORNAROS M E, LYBERATOS G K. Adaptive optimization of a nitrifying sequencing batch reactor [J]. Wat Res, 1999, 33: 3569-3576.
  • 7SPERANDIO M, QUEINNEC I. Online estimation of wastewater nitrifiable nitrogen, nitrification dynamics and denitrification rates, using ORP and DO dynamics[J]. Wat Sci Technol, 2004, 49(10) : 31-38.
  • 8PUIG S, COROMINAS L, VIVES M T, et al. Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points[J]. Indus Eng Chem Res, 2005, 44(9) : 3367-3373.
  • 9RA C S, LO K V, SHIN J S, et al. Biological nutrient removal with an internal organic carbon source in piggery wastewater [J]. Wat Res, 2000, 34: 965-973.
  • 10GUO J, YANG Q, PENG Y, et al. Biological nutrient removal with real time control using step-feed SBR technology[ J ]. Enzyme Microb Technol, 2007, 40(6) : 1564-1569.

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部