期刊文献+

蚁群算法融合粗糙集理论的属性约简算法 被引量:2

A Algorithm for Reduction of Attributes Based on Ant Colony Algorithm and Rough Set Theory
下载PDF
导出
摘要 为了克服属性约简过程中寻找最小属性集算法存在时间复杂度高搜索空间大等不足,把属性抽象为节点,通过蚁群算法搜索得到节点的最少组合,使得其能代替原有的属性节点并保持决策系统的粗糙分类能力.针对蚁群算法初期信息素匮乏,收敛速度慢的问题,将蚁群算法和粗糙集理论融合,采用粗糙集理论的相关算法确定属性核,并将其作为蚁群算法的初始节点.利用蚁群算法的搜索能力,用于最小属性集的搜索.理论分析和实验结果表明,该算法可行有效. In order to overcome the defect of high time complexity and wide search space for finding the minimal attribute set during attribute reduction. In this paper, the reduction of attributes is considered as a special optimization process by ant colony algorithm displayed good performance in solving complex problem of combinational optimization. First,an attribute is abstracted as a node and the lease combination of these nodes is found which can take place in all attribute node s but not change the degree of classified roughness. Base on these points, rough set theory and ant colony algorithm are combined according to the problem of ant colony algorithm with little information pheromone and slow convergence rate. The attribute core is determined through the correlative algorithms of rough set theory, which can be used as initial node of ant colony algorithm. Finally, the least attribute set is scanned by means of the search capacity of ant colony algorithm. Theory analysis and experimental results show that the algorithm proposed in this paper is feasible and effective.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第9期1292-1296,共5页 Journal of Beijing University of Technology
基金 国家'九七三'资助项目(2006CB303103) 北京市自然基金资助项目(4063037) 北京工业大学博士科研启动基金资助项目(52007011200701)
关键词 蚁群算法 粗糙集 属性约简 ant colony algorithm rough set attribute reduction
  • 相关文献

参考文献9

  • 1PAWALK Z. Rough sets [ J]. International Journal of Computer and Information Science, 1982, 11 (5) : 341-356.
  • 2PAWALK Z. Rough sets : theoretical aspects of reasoning about data[ M ]. Boston : Kluwer Academic Publishers, 1991 : 9-30.
  • 3YAO Yi-yu, ZHAO Yan, WANG Jue, et al. A model of machine learning based on user preference of attributes [ C ] // Proceedings of Rough Sets and Current Trends in Computing ( RSCTC 2006) , Berlin : Springer-Verlag, 2006 : 557-576.
  • 4TSUMOTO S. Attribute generalization and fuzziness in data mining contexts [ C ] //Proceedings of Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC2007) , Berlin : Springer-Verlag, 2007 : 379-386.
  • 5YIN Ying, ZHANG Bin, ZHAO Yu-hai. Mining the most interesting patterns from muhiple phenotypes medical data[ C] // Proceedings of Rough Sets and Current Trends in Computing ( RSCTC 2006) , Berlin : Springer-Verlag, 2006 : 696-705.
  • 6WONG S K M, ZIARKO W. On optimal decision rules in decision tables[ J]. Bulletin of Polish Academy of Sciences, 1985, 33(11-12) : 693-696.
  • 7DORIGO M, STUTZLE T. Ant colony optimization[ M ]. Cambridge: MIT Press, 2004 : 1432-2994.
  • 8JIANG Yuan-chun, LIU Ye-zheng. An attribute reduction method based on ant colony optimization [ C ]//Proceedings of the 6th World Congress on Intelligent Control and Automation. Washington: IEEE Computer Society Press, 2006: 3542-2346.
  • 9ASUNCION A, NEWMAN D. UCI machine learning repository[ EB/OL] [ 2008-08-10 ]. http://archive. ies. uci. edu/ml/.

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部