期刊文献+

基于ICA与SVM算法的高光谱遥感影像分类 被引量:50

Hyperspectral Remote Sensing Image Classification Based on ICA and SVM Algorithm
下载PDF
导出
摘要 提出了一种利用独立分量分析(ICA)与支撑向量机(SVM)算法进行高光谱遥感影像分类的新方法。采用ICA算法对高光谱遥感影像(PHI传感器获取,80波段)进行了特征提取,并以提取出的影像数据(光谱维数为20)构建SVM分类器。对SVM算法进行核函数删选与参数寻优后,发现采用RBF核的SVM算法(C=103,γ=0.05)分类结果最佳,分类精度与Kappa系数分别达94.5127%与0.935 1,优于BP-神经网络(分类精度39.4758%,Kappa系数0.315 5)、波谱角分类(分类精度80.282 6,Kappa系数0.770 9)、最小距离分类(分类精度85.462 7%,Kappa系数0.827 7)以及最大似然分类(分类精度86.015 6%,Kappa系数0.835 1)4种方法。针对分类结果常出现的"椒盐"现象,利用形态学算子对SVM(RBF核)分类结果进行了类别集群处理,将分类精度与Kappa系数分别提高至94.758 4%与0.938 0,获得了更接近实况的分类图像。结果表明:ICA结合SVM算法准确率高,是高光谱遥感影像分类的优选方法,且类别集群是优化影像分类的有效方法之一。 A novel method was developed to classify hyperspectral remote sensing image based on independent component analysis(ICA) and support vector machine(SVM) algorithms.The characteristic information of the hyperspectral remote sensing image captured by PHI(made in China,with 80 bands) was extracted by ICA algorithm,and SVM classifier was established with the extracted image data(20 spectral dimensions).After kernel function selecting and parameter optimizing,it was found that the SVM algorithm(RBF kernel function;parameter C=103,γ=0.05)with accuracy 94.512 7% and kappa coefficient 0.935 1 has the best classification result,better than the results of four kinds of conventional algorithms,including neural net classification(accuracy 39.475 8% and kappa coefficient 0.315 5),spectral angle mapper classification(accuracy 80.282 6% and kappa coefficient 0.770 9),minimum distance classification(accuracy 85.462 7% and kappa coefficient 0.827 7) and maximum likelihood classification(accuracy 86.015 6% and Kappa coefficient 0.835 1).In order to control the "pepper and salt" phenomenon which appeared in classification map frequently,the classification result of SVM(RBF kernel) was operated by the method of clump classes using the morphological operators,and that the classification map closer to actual situation was acquired,with the accuracy and kappa coefficient increasing to 94.758 4% and 0.938 0,respectively.The study indicated that the ICA combined with SVM was an preferred method for hyperspectral remote sensing image classification,and clump classes was a effective method to optimized the classification result.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第10期2724-2728,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(30570279) 中南大学研究生创新项目(1343-74334000022) 中南大学拔尖博士研究生学位论文创新项目(1960-71131100007) 中南大学优秀博士论文扶持项目(2008yb024) 中南林业科技大学林业遥感信息工程研究中心开放性研究基金项目(RS2008k03)资助
关键词 高光谱 分类 支撑向量机(SVM) 独立分量分析(ICA) 类别集群 Hyperspectral Classification Support vector machine(SVM) Independent component analysis(ICA) Clump classes
  • 相关文献

参考文献17

  • 1TONG Qing-xi,ZHANG Bing,ZHENG Lan-fen(童庆禧,张兵,郑兰芬).Hyperspectral Remote Sensing-Theory,Technology and Application(高光谱遥感原理、技术与应用).Beijing:Higher Education Press(北京:高等教育出版社),2006.
  • 2PU Rui-liang, GONG Peng(浦瑞良,宫鹏). Hyperspectral Remote Sensing and Its Applications(高光谱遥感及其应用). Beijing: Higher Education Press(北京:高等教育出版社), 2000.
  • 3ZHANG Liang-pei,ZHANG Li-fu(张良培,张立福).Hyperspectral Remote Sensing(高光谱遥感).Wuhan:Wuhan University Press(武汉:武汉大学出版社),2005.
  • 4WAN Yu-qing,TAN Ke-long,ZHOU Ri-ping(万余庆,谭克龙,周日平).Application of Hyperspectral Remote Sensing(高光谱遥感应用研究).Beijing:Science Press(北京:科学出版社),2006.
  • 5LIANGLiang LIUZhi-xiao YANGMin-hua etal(梁亮 刘志霄 杨敏华 等).红外与毫米波学报,2009,28(5):353-353.
  • 6WUDi HEYong FENGShui-juan etal(吴迪 何勇 冯水娟 等).红外与毫米波学报,2008,27(3):180-180.
  • 7WANGLi-guo ZHAOChun-hui QIAOYu-long etal(王立国 赵春晖 乔玉龙 等).红外与毫米波学报,2008,27(6):442-442.
  • 8Sun D Y,Li Y M,Wang Q A.IEEE Transaction on Geoscience and Remote Sensing,2009,47(8):2957.
  • 9SULing-hua YITong-sheng WANJian-wei(苏令华 衣同胜 万建伟).光子学报,2008,37(5):973-973.
  • 10Tu T M,Huang P S,Chen P Y.IEEE Proceedings on Vision,Image and Signal Processing,2001,148(4):217.

共引文献7

同被引文献636

引证文献50

二级引证文献479

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部