期刊文献+

基于小波去噪和AR建模的MEMS陀螺数据处理方法 被引量:3

Method for MEMS gyroscope data processing based on wavelet denoising and AR modeling
下载PDF
导出
摘要 为解决MEMS陀螺输出信号中噪声大、随机漂移严重的问题,提出了一种基于小波去噪和AR建模的MEMS陀螺组合数据处理方法。采用小波去噪法对MEMS陀螺输出信号去噪,自适应确定小波分解层数,提高了其信噪比。采用AR(auto-regressive,自回归)模型对MEMS陀螺的随机漂移进行建模,利用平均均方预测误差确定模型的最佳阶数,并与传统的一阶马尔可夫模型进行了比较。实验结果表明,该组合数据处理方法可有效抑制MEMS陀螺输出噪声,且能更精确地对MEMS陀螺随机漂移进行建模及预测。 To solve the problem that the outputs of MEMS gyroscope contain high noise and serious random drift, a combined method for MEMS gyroscope data progressing based on wavelet denoising and AR modeling is presented. Firstly, wavelet denoising is used to denoise and improve the signal-to-noise ratio of MEMS gyroscope output. The optimal number of decomposition level is selected using adaptive algorithm. Then AR model is established to model MEMS gyroscope random drift and compared with a first-order- Gauss-Ma- rkov process (GM). The method based on average mean squared prediction error (APE) is used to choose the optimal order of AR model. Experiments indicated that the proposed method could effectively suppress noise and could more accurately model and predict the random drift of MEMS gyroscope when compared to a first-order-Gauss-Markov process.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第19期4280-4283,共4页 Computer Engineering and Design
关键词 MEMS陀螺 随机噪声 随机漂移 小波去噪 AR模型 MEMS gyroscope random noise random drift wavelet denoising AR model
  • 相关文献

参考文献7

  • 1Mohammed El-Diasty,Spiros Pagiataki.Calibration and stochastic modelling of inertial navigation sensor errors[J].Journal of Global Positioning Systems,2008,7(2):170-182.
  • 2Minha Park.Error analysis and stochastic modeling of MEMSbased inertial sensors for land vehicle navigation applications[D].Canada:CALARY,2004:31-83.
  • 3宋丽君,秦永元,杨鹏翔.小波阈值去噪法在MEMS陀螺仪信号降噪中的应用[J].测试技术学报,2009,23(1):33-36. 被引量:25
  • 4Sameh Nassar.Improving the inertial navigation system (INS) error model for INS and INS-DGPS applications[D].CALGARY,2003:32-82.
  • 5Tie Cai,Xing Wu.Wavelet-based de-noising ofspeech using adaptive decomposition[C].IEEE International Conference on Industrial Technology,2008:1-5.
  • 6蔡铁,朱杰.小波阈值降噪算法中最优分解层数的自适应选择[J].控制与决策,2006,21(2):217-220. 被引量:44
  • 7Noureldin A,Karamat TB,Ebcrts kid,et al.Performance enhancement of MEMS based INS-GPS integration for low cost navigation applications[J].IEEE Transactiom on Vehicular Technology,2009,58(3):1077-1096.

二级参考文献13

  • 1吉训生,王寿荣.小波变换在MEMS陀螺仪去噪声中的应用[J].传感技术学报,2006,19(1):150-152. 被引量:18
  • 2Seok J W,Bae K S.Speech Enhancement with Reduction of Noise Components in the Wavelet Domain[A].Proc of the ICASSP[C].Munich,1997,2:1323-1326.
  • 3Lu C T,Wang H C.Enhancement of Single Channel Speech Based on Masking Property and Wavelet Transform[J].Speech Communication,2003,41(2-3):409-427.
  • 4Medina C A,Aleaim A,Apolinario J A.Wavelet De-noising of Speech Using Neural Networks for Threshold Selection[J].Electronics Letters,2003,39(25):1869-1871.
  • 5Mallat S G,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002:340-358.
  • 6Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
  • 7Zhang X P,Desai M T.Adaptive De-noising Based on SURE Risk[J].IEEE Signal Processing Letters,1998,5(10):265-267.
  • 8Vautard R,Yiou P,Ghil M.Singular-spectrum Analysis:A Toolkit for Short Noisy Chaotic Signals[J].Physica D,1992,58(1-4):95-126.
  • 9Alexandros Leontitsis,Tassos Bountis,Jenny Pagge.An Adaptive Way for Improving Noise Reduction Using Local Geometric Projection[J].Chaos,2004,14(1):106-110.
  • 10Jawerth B. An overview of wavelet based multiresolution analyses[J], 1994, 36(3): 377-412.

共引文献66

同被引文献21

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部