期刊文献+

基于PEA的椭圆轨道航天器编队飞行高精度位置保持 被引量:1

High Accuracy Relative Position Keeping Based on PEA Approach for Spacecraft Formation Flight around Eccentric Orbits
下载PDF
导出
摘要 针对航天器编队飞行时相对位置保持精度要求高的特点,采用基于线性变参数模型的多项式特征结构配置方法设计椭圆轨道航天器间相对位置控制算法。对于线性变参数控制系统,本文将基于线性定常系统的多项式特征结构配置方法推广以确保系统性能与变化参数间的独立性。在特征结构配置时,先设计带参数变化的控制器结构后计算出带未知控制器增益的设计闭环传递函数,接着将其与含有闭环系统性能的期望传递函数在三个条件下进行匹配,进而获得未知控制器增益的表达式。在设计实际控制椭圆轨道编队飞行MIMO相对位置保持算法时,将系统期望传递函数设为解耦形式来实现三轴位置控制间的解耦控制,达到提高系统控制性能的目的。最后进行相应的数学仿真,其结果表明该算法能够保证系统的高精度位置保持要求。 Focusing on the high precision of relative position keeping for formation flying,a controller based on linear parameter varying(LPV) polynomial eigenstructure assignment(PEA) is presented for the formation flight control of spacecrafts around eccentric orbits.For LPV control system,a PEA approach based on LTI model is extended to ensure the independence between closed-loop system and system varying parameters.During the procedure of PEA,a controller construct is presented firstly,and then the designed closed-loop transfer function with unknown controller gains is expressed.The desired transfer function including the required performance of closed-loop system,is used to evaluate the unknown controller gains under three matching conditions.To implement the approach for relative position MIMO control spacecraft formation flight around eccentric orbits,the desired transfer function is chosen as independent form in each channel to decouple MIMO system and improve system performance.Finally,a simulation is carried out and the results indicate that the algorithm can obtain the required high performance of system.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第9期2114-2121,共8页 Journal of Astronautics
基金 国家自然科学基金(60904051) 中国博士后科学基金(20090450126) 教育部博士点新教师基金(20092302120067)
关键词 航天器设计 编队飞行 多项式特征结构配置 线性变参数 高精度相对位置保持 Spacecraft design Formation flight Polynomial eigenstructure assignment (PEA) Linear parameter varying (LPV) High accuracy relative position keeping
  • 相关文献

参考文献15

  • 1林来兴.空间交会对接技术[M].北京:国防工业出版社,1995..
  • 2林来兴.微小卫星绕飞空间站的动力学和控制[J].航天控制,1999,17(3):26-33. 被引量:13
  • 3师鹏,李保军,赵育善.有限推力下的航天器绕飞轨道保持与控制[J].北京航空航天大学学报,2007,33(7):757-760. 被引量:11
  • 4Starin S,Yedavalli R,Sparks A.Design of a LQR controller of reduced inputs for multiple spacecraft formation flying[C].The American Control Conference,Arlington,VA,2001.
  • 5Wang F,Cac X,Chen X.On-orbit-servicing Spacecraft flyaround orbit design and LQR keep control in Eccentric orbits[C].2007 Second IEEE Conference on Industrial Electronics and Applications,Harbin,China,May 23-25,2007.
  • 6卢山,徐世杰.椭圆轨道卫星编队飞行的最优控制研究[J].中国空间科学技术,2008,28(1):18-26. 被引量:3
  • 7Arthur R,Tom S,Jonathan H,et al.Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming[J].Journal of Guidance,Control,and Dynamics,2002,25(4):755-759.
  • 8Tillerson M.Coordination and control of multiple spacecraft using convex optimization techniques[D].USA:Massachusetts Institute of Technology,June,2002:129-152.
  • 9Ulybyshev Y.Continuous thrust orbit transfer optimization using large-scale linear programming[J].Journal of Guidance,Control,and Dynamics,2007,30(2):427-436.
  • 10Okano R,Kida T,Nagashio T.Asymptotic stability of second-order linear time-varying systems[J].Journal of Guidance,Control,and Dynamics,2006,29(6):1472-1476.

二级参考文献19

  • 1林来兴.空间交会动力学和安全模式[J].宇航学报,1993,14(1):1-6. 被引量:16
  • 2刘少然,曾国强.编队飞行航天器平均轨道根数非线性控制研究[J].中国空间科学技术,2005,25(5):24-28. 被引量:4
  • 3Hong Wong,Kapila V,Sparks A G.Adaptive output feedback tracking control of spacecraft formation[J].International Journal of Robust and Nonlinear Control,2002(12):117-139
  • 4Yang Guang,Yang Qingsong,Kapila V,et al.Fuel optimal manoeuvres for multiple spacecraft formation reconfiguration using multi-agent optimization[J].International Journal of Robust and Nonlinear Control,2002 (12):243 -283
  • 5NAASZ B J, KARLGAARD C D, HALL C D. Application of Several Control Techniques for the Ionospheric Observation Nanosatellite Formation [R] . AAS 02-188, 2002.
  • 6ALFRIEND K T, YAN H, VADALI S R. Nonlinear Considerations in Satellite Formation Flying [R]. AIAA 2002-4741, 2004.
  • 7ALFRIEND K T, YAN H. Evaluation and Comparison of Relative Motion Theories [J]. Journal of Guidance, Control, and Dynamics, 2005, 28 (2): 254-261.
  • 8SEDWICK R J, MILLER D W, KONG E M C. Mitigation of Differential Perturbations in Formation Flying Satellite Clusters [J]. Journal of the Astronautical Sciences, 1999, 47 (3): 309-331.
  • 9ALFRIEND K T, SCHAUB H, GIM D W. Gravitational Perturbations, Nonlinearity and Circular Orbit Assumption Effects on Formation Flying Control Strategies [R]. AAS 00-012, 2000.
  • 10STARIN S R, YEDAVLLI R K, SPARKS A G. Spacecraft Formation Flying Maneuvers Using Linear-Quadratic Regulation With No Radial Axis Inputs [R]. AIAA 2001-4092, 2001.

共引文献72

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部