期刊文献+

非结构化环境下月球车快速即时定位与制图方法 被引量:2

A Fast Lunar Rover Simultaneous Localization and Map-Building Method under Unstructured Environment
下载PDF
导出
摘要 激光雷达的实时环境扫描与已构建环境模型之间的匹配是月球车即时定位与制图(SLAM)过程中的关键步骤,其收敛速度和准确性直接决定了SLAM的成败。月球表面是一种典型非结构化环境,其环境场景特征复杂。若通过三维激光匹配方式则传感器数据量大,特征匹配的难度高,实时性差。针对于此,本文提出了一种基于ICP算法的激光点扫描匹配方法-类等高线匹配方法,将二维激光雷达的实时扫描数据与已构建的三维环境高程图相匹配,利用RBPF粒子滤波实现位姿与地图状态的估计,采用自行研制的小型激光雷达硬件平台,较好地实现了月球车原理样机的快速SLAM过程。实验表明,基于该方法的即时定位与制图过程对于月球车位姿估计的鲁棒性强,实时性好。 Alignment or registration of on-line scan sampled by Lidar with the established environment model is a critical step in lunar rover simultaneous localization and mapping(SLAM) .Performance of SLAM is dominated by the efficiency and the accuracy of the laser alignment procedure.The surface of lunar is a typical unstructured environment because of its complex structure.In this kind of environment,3D laser scan is intractable because the registration tends to be difficult and convergent slowly due to the considerable computation burden resulted by dense laser data.In light of this deficiency,an ICP-based efficient laser scan match approach,named‘Contour Like Registration’,is proposed in this paper.In this method,2D laser real-time scan data is matched with the 3D elevation map built so far.By employing Rao-Blackwellized Particle Filter for rover localization and map estimation,fast on-line lunar rover SLAM is obtained by using a compact Lidar.It is evaluated from experimental results that the proposed method yields consistent real-time lunar rover pose estimation.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第9期2145-2149,共5页 Journal of Astronautics
基金 国家863计划资助项目(2006AA12Z307)
关键词 月球车 即时定位与制图 非结构化环境 粒子滤波 扫描匹配 Lunar rover SLAM Unstructured environment Particle filter Scan match
  • 相关文献

参考文献7

  • 1Csorba M.Simultaneous localisation and map building[D].Oxford:University of Oxford,1997.
  • 2Montermerlo M.FastSLAM:a factored solution to the simultaneous localization and mapping problem with unknown data association[D].Pittsburgh:Carnegie Mellon University,2003.
  • 3Besl P J,McKay N D.A method for registration of 3-d shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
  • 4Maurice M,Hartmut S,Kai P,et al.The accuracy of 6D SLAM using the AIS 3D laser scanner[C].IEEE International Conference on Multisensor Fusion and Integration for Intelligent System,Heidelberg,Germany,September 4-6,2006.
  • 5Nuchter A,Lingemann K,Hertzberg J,et al.6D SLAM with approximate data association[C].International Conference on Advanced Robotics,Seattle,USA,July 18-20,2005.
  • 6Grisetti G,Stachniss C,Burgard W.Improved techniques for grid mapping with rao-blackwellized particle filters[J].IEEE Tranrsaction on Robotics,2007,23(1):34-46.
  • 7杨明,董斌,王宏,张钹,Helder Araújo.基于激光雷达的移动机器人实时位姿估计方法研究[J].自动化学报,2004,30(5):679-687. 被引量:12

二级参考文献1

共引文献11

同被引文献17

  • 1孙宇,项志宇,刘济林.未知室外环境下移动机器人的三维场景重建[J].浙江大学学报(工学版),2007,41(12):1949-1954. 被引量:8
  • 2Nuchter A, Lingemann K, Hertzberg J, et al. 6D SLAM-3D mapping outdoor environments [J]. Journal of Field Robotics, 2007,24(8/9) :699 - 722.
  • 3Nuchter A, Lingemann K, Hertzberg J, et al. 6D SLAM with approximate data association [C] // Proceedings of the 12th International Conference on Advanced Robotics. Seattle: [s.n.], 2005:242- 249.
  • 4Ondrej J. 3D mapping and localization using leveled map accelerated ICP[C] // Proceedings of Second European Robotics Symposium. Prague: [s. n. ], 2008..343-353.
  • 5Miura J, Ikeda S. A simple modeling of complex environments for mobile robots [ J ]. International Journal of Intelligent Systems Technologies and Applications, 2009, 6(1/2) : 166 - 177.
  • 6Ikeda S, Miura J. 3D indoor environment modeling by a mobile robot with omnidirectional stereo and laser range finder[C] // Proceedings of International Conference on Intelligent Robots and Systems. Beijing: [s. n. ], 2006: 3435 - 3440.
  • 7Miura J, Negishi Y, Shirai Y. Mobile robot map generation by integrating Omni-directional stereo and laser range finder[C] // Proceedings of International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: [s. n. ], 2002:250 - 255.
  • 8Montermerlo M. FastSLAM: a factored solution to the simultaneous localization and mapping problem with unknown data association[D]. Pittsburg: School of Computer Science, Carnegie Mellon University, 2003.
  • 9Li X, Cui W, Jia S. Range scan matching and particle filter based mobile robot SLAM[C] // Proceedings of IEEE International Conference on Robotics and Biomimetics. Tianjin, China: [ s. n. ], 2010: 779 - 784.
  • 10杜航原,郝燕玲,高忠强,赵巍华.基于鲁棒非线性卡尔曼滤波的自适应SLAM算法[J].宇航学报,2012,33(5):620-627. 被引量:5

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部