期刊文献+

基于服务器并行求解三角形方程组的设计与实现

Designing and building algorithm for parallel solution of triangular systems based on server
下载PDF
导出
摘要 针对在实际应用中超出内存容量的大规模矩阵不可调入的问题,设计并实现了一种面向A矩阵连续划分的、子文件大小可调节的求解三角形方程组的并行方案。理论上只要在不超过硬盘容量的前提下,该算法可以在小规模内存条件下求解任意规模的矩阵。最后给出在Altix3700服务器上基于ABEEM模型的数值实验,实验结果表明了该算法的有效性。 A parallel algorithm is proposed, in which it' s A matrix is divided into several adjustable smaller matrix files to solve the problem that the matrix' s scale is larger than the memory' s capacity. Theoretically, this algorithm may solve the random scale matrix under the small condition of memory as long as it does not surpass the hard disk' s capacity. Finally, numerical experiments about the algorithm based on ABEEMαπ model on Altix3700 are carried on, and it obtains the correct results and confirms the algorithm' s validity.
作者 刘青昆 邢芳
出处 《计算机工程与设计》 CSCD 北大核心 2010年第18期4005-4008,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(20633050) 辽宁省博士科研启动基金项目(20051058)
关键词 ABEEM模型 分布式存储 三角形方程组 并行算法 MPI 矩阵划分 ABEEMαπ model distributed-memory triangular solver parallel algorithm MPI division of Matrix
  • 相关文献

参考文献7

二级参考文献13

  • 1尚月强.Windows2000下基于PVM的并行计算实践研究[J].计算机系统应用,2005,14(4):67-69. 被引量:10
  • 2迟学斌.在具有局部内存与共享主存的并行机上并行求解线性方程组[J].计算数学,1995,17(2):210-217. 被引量:5
  • 3尚月强,杨一都.基于PVM的稠密线性方程组网上并行求解[J].计算机工程与设计,2006,27(9):1591-1594. 被引量:5
  • 4Li G,Coleman T.A new method for solving triangular system on distributed-memory message-passing multiprocessors[J].SIAM J Sci Statist Comput,1989,10(2):383-396.
  • 5Fiebach P.Cyclic block-algorithms for solving triangular systems on distributed-memory multiprocessors with meshtopology[J].Parallel Comput,1996,22 (3):383-393.
  • 6Bjorek A.Numerics of gram-schmidt orthogonalization[J],Linear Algebra,1994,197/198:297-316
  • 7Daniel J W,Gragg W B,Kaufman L,et al.Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization[M].Math.Comp.1976:772-795
  • 8Achiya Dax.A modified gram-schmidt algorithm with iterative orthogonalization and column pivoting[J].Linear Algebra and its Applications,2000,310:25-42
  • 9Stewart G W.Matrix Algorithms[M].SIAM,Philadelphia,PA,1998
  • 10Vanderstraeten D.An accurate parallel block Gram-Schmidt algorithm without reorthogonalization,Numer[J].Linear Algebra Appl.,2000,7(4):219-236

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部