期刊文献+

Quantum-Mechanical Study on Surrounding-Gate Metal-Oxide-Semiconductor Field-Effect Transistors 被引量:1

Quantum-Mechanical Study on Surrounding-Gate Metal-Oxide-Semiconductor Field-Effect Transistors
下载PDF
导出
摘要 As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into thenanometer regime, quantum mechanical effects are becoming more and more significant.In this work, a model for thesurrounding-gate (SG) nMOSFET is developed.The Schrdinger equation is solved analytically.Some of the solutionsare verified via results obtained from simulations.It is found that the percentage of the electrons with lighter conductivitymass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases.Thecentroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carrierswill suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced. As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for the surrounding-gate (SG) nMOSFET is developed. The SchrSdinger equation is solved analytically. Some of the solutions are verified via results obtained from simulations. It is found that the percentage of the electrons with lighter conductivity mass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases. The eentroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carriers will suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第10期763-767,共5页 理论物理通讯(英文版)
基金 Support of Shanghai Science Foundation under Grant No.09ZR1402900 the National Science Foundation of China under Grant No.60676020 Supported in part by the Special Funds for Major State Basic Research (973 Project) under Grant No.2006CB302703
关键词 金属氧化物半导体场效应晶体管 量子力学效应 MOSFET NMOS器件 硅氧化物 通道长度 纳米尺度 解析求解 simiconductor devices, quantum mechanical effects, effective electron mobility
  • 相关文献

参考文献21

  • 1H. Lu and Y. Taur, IEEE Trans. Electron Devices 53 (2006) 1161.
  • 2B. Yu, H. Lu, M. Liu, and Y. Taur, IEEE Trans. Electron Devices 54 (2007) 2715.
  • 3B. Yu, L. Wang, Y. Yuan, P M. Asbeck, and Y. Taur, IEEE Trans. Electron Devices 55 (2008) 2846.
  • 4L. Wang, D. Wang, and P.M. Asbeck, Solid State Electron. 50 (2006) 1732.
  • 5E. Gili, V. Kunz, C.de Groot, T. Uchino, P. Ashburn, D. Donaghy, S. Hall, Y. Wang, and P. Hemment, Solid State Electron 48 (2004) 511.
  • 6D. Jimenez, B. Iniguez, J. Sune, L.F. Marsal, J. Pallares, J. Roig, and D. Flores, IEEE Electron Device Lett. 25 (2004) 571.
  • 7J. He, W. Bian, Y. Tao, S. Yang, and X. Tang, IEEE Trans. Electron Devices 54 (2007) 1478.
  • 8L. Ge and J. G. Fossum, IEEE Trans. Electron Devices 49 (2002) 287.
  • 9G.X. Hu, R. Liu, T.A. Tang, S.J. Ding, and L.L. Wang, Jpn. J. Appl. Phys. 46 (2007) 1437.
  • 10G.X. Hu, R. Liu, T.A. Tang, and L.L. Wang, J. Korean. Phys. Soc. 52 (2008) 1909.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部