期刊文献+

杂交有限元构造的正交假设应力场方法

On efficient construction of hybrid finite elements with orthogonal assumed stress field method
下载PDF
导出
摘要 分别对各向同性和正交各向异性材料的假设应力场进行正交化并形成相应的杂交元,由于避免了柔度矩阵求逆运算,从而提高了杂交元分析效率。对各向同性材料杂交元直接利用柔度矩阵特征向量导出了正交假设应力场,其正交性不依赖于材料,因而具有更好的适用性。此外由于不需要借助本征变形模式进行迭代而避免了复杂的数值计算。对于正交各向异性材料提出了一种材料矩阵分裂法对假设应力场进行正交化,研究结果表明,所得的正交应力场只与材料两个主方向弹性模量的比值有关,因而不受横向泊松效应的影响。采用本文方法对2D-4节点单元和3D-8节点单元的常用应力场进行正交化,给出了十分简洁的结果。 A set of orthogonally assumed stress fields are presented to efficiently formulate the hybrid elements of isotropic and orthotropic materials. In the proposed approach, the inverse of flexibility matrix is avoided, so the computational efficiency is significantly improved. The orthogonal stress field for isotropic material is obtained by using the transformation matrix formed by the eigenvectors of element flexibility matrix. It is noted that there is no numerical computation involved here and the orthogonality within the stress field is fully independent of the material properties. For orthotropic materials, a method of material matrix decomposition is proposed to derive the orthogonal stress field. This orthogonal relationship depends on the ratio between the elastic modulus in the two principal directions but is totally free of the Poison response due to transverse deformation. Several 2-D and 3-D examples show that the proposed method is very straightforward and effective.
机构地区 厦门大学
出处 《应用力学学报》 CAS CSCD 北大核心 2010年第3期526-531,644,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10972188) 福建省科技项目(2007F3096) 厦门市科技项目(3502Z20073012)
关键词 杂交应力元 假设应力场 正交化方法 各向同性材料 正交各向异性材料 hybrid stress element, assumed stress field, orthogonalization method, isotropic material, orthotropic material.
  • 相关文献

参考文献11

二级参考文献34

  • 1田宗漱,王安平.一类新的具有无外力圆柱表面的杂交应力元[J].应用力学学报,2007,24(4):499-503. 被引量:5
  • 2李雷,吴长春,谢水生.基于Hellinger-Reissner变分原理的应变梯度杂交元设计[J].力学学报,2005,37(3):301-306. 被引量:5
  • 3张灿辉,黄黔,冯伟.杂交元假设应力模式的变形刚度分析[J].应用数学和力学,2006,27(7):757-764. 被引量:7
  • 4卡得斯图赛H 诸得超等(译).有限元法手册[M].北京:科学出版社,1995.523,537-538.
  • 5Pian T H H. Derivation of element stiffness matrices [J]. AIAA, 1964, 2(3): 576-577.
  • 6Pian T H H, Chen D P. On the suppression of zero energy deformation modes [J]. Intemational Journal for Numerical Methods in Engineering, 1983, 19: 1741- 1752.
  • 7Sze K Y, Liu X H, Lo S H. Hybrid-stress six-node prismatic elements [J]. International Journal for Numerical Methods in Engineering, 2004, 61 (9): 1451 - 1470.
  • 8Zhang C, Wang D, Zhang J, Feng W, Huang H. On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation [J]. Finite Elements in Analysis and Design, 2007, 43:321 -332.
  • 9Han J, Hoa S V. A three-dimensional multilayer composite finite element for stress analysis of composite laminates [J]. International Journal for Numerical Methods in Engineering, 1993, 36:3903-3914.
  • 10Huang Q. Modal analysis of deformable bodies with finite degree of deformation freedom-an approach to determination of natural stress modes in hybrid finite elements [C]//Chien W Z, Fu Z Z. Advances in Applied Mathematics & Mechanics in China, IAP, 1991, 3: 283- 303.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部